opm-simulators/examples/problems/co2injectionproblem.hh
Andreas Lauser cad639ec21 adapt to the reworked blackoil fluid system and function tabulation classes
in particular, the density of undersaturated oil is now the one
specified by the PVTO keyword...
2014-07-24 14:59:34 +02:00

621 lines
22 KiB
C++

/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::Co2InjectionProblem
*/
#ifndef EWOMS_CO2_INJECTION_PROBLEM_HH
#define EWOMS_CO2_INJECTION_PROBLEM_HH
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/fluidsystems/BrineCO2FluidSystem.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/heatconduction/Somerton.hpp>
#include <opm/material/binarycoefficients/Brine_CO2.hpp>
#include <opm/material/UniformTabulated2DFunction.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <iostream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class Co2InjectionProblem;
namespace Co2Injection {
#include <opm/material/components/co2tables.inc>
}
} // namespace Ewoms
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(Co2InjectionBaseProblem);
// declare the CO2 injection problem specific property tags
NEW_PROP_TAG(FluidSystemPressureLow);
NEW_PROP_TAG(FluidSystemPressureHigh);
NEW_PROP_TAG(FluidSystemNumPressure);
NEW_PROP_TAG(FluidSystemTemperatureLow);
NEW_PROP_TAG(FluidSystemTemperatureHigh);
NEW_PROP_TAG(FluidSystemNumTemperature);
NEW_PROP_TAG(MaxDepth);
NEW_PROP_TAG(Temperature);
NEW_PROP_TAG(SimulationName);
// Set the grid type
SET_TYPE_PROP(Co2InjectionBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(Co2InjectionBaseProblem, Problem,
Ewoms::Co2InjectionProblem<TypeTag>);
// Set fluid configuration
SET_PROP(Co2InjectionBaseProblem, FluidSystem)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Ewoms::Co2Injection::CO2Tables CO2Tables;
static const bool useComplexRelations = false;
public:
typedef Opm::FluidSystems::BrineCO2<Scalar, CO2Tables> type;
// typedef Opm::FluidSystems::H2ON2<Scalar, useComplexRelations> type;
};
// Set the material Law
SET_PROP(Co2InjectionBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { liquidPhaseIdx = FluidSystem::liquidPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>
Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedBrooksCorey<Traits> EffMaterialLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffMaterialLaw> type;
};
// Set the heat conduction law
SET_PROP(Co2InjectionBaseProblem, HeatConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::Somerton<FluidSystem, Scalar> type;
};
// Write the Newton convergence behavior to disk?
SET_BOOL_PROP(Co2InjectionBaseProblem, NewtonWriteConvergence, false);
// Enable gravity
SET_BOOL_PROP(Co2InjectionBaseProblem, EnableGravity, true);
// Reuse linearizations if possible?
SET_BOOL_PROP(Co2InjectionBaseProblem, EnableLinearizationRecycling, true);
// set the defaults for the problem specific properties
SET_SCALAR_PROP(Co2InjectionBaseProblem, FluidSystemPressureLow, 3e7);
SET_SCALAR_PROP(Co2InjectionBaseProblem, FluidSystemPressureHigh, 4e7);
SET_INT_PROP(Co2InjectionBaseProblem, FluidSystemNumPressure, 100);
SET_SCALAR_PROP(Co2InjectionBaseProblem, FluidSystemTemperatureLow, 290);
SET_SCALAR_PROP(Co2InjectionBaseProblem, FluidSystemTemperatureHigh, 500);
SET_INT_PROP(Co2InjectionBaseProblem, FluidSystemNumTemperature, 100);
SET_SCALAR_PROP(Co2InjectionBaseProblem, MaxDepth, 2500);
SET_SCALAR_PROP(Co2InjectionBaseProblem, Temperature, 293.15);
SET_STRING_PROP(Co2InjectionBaseProblem, SimulationName, "co2injection");
// The default for the end time of the simulation
SET_SCALAR_PROP(Co2InjectionBaseProblem, EndTime, 1e4);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(Co2InjectionBaseProblem, InitialTimeStepSize, 250);
// The default DGF file to load
SET_STRING_PROP(Co2InjectionBaseProblem, GridFile, "data/co2injection.dgf");
} // namespace Properties
} // namespace Opm
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief Problem where \f$CO_2\f$ is injected under a low permeable
* layer at a depth of 2700m.
*
* The domain is sized 60m times 40m and consists of two layers, one
* which is moderately permeable (\f$K = 10^{-12}\;m^2\f$) for \f$ y >
* 22\; m\f$ and one with a lower intrinsic permeablility (\f$
* K=10^{-13}\;m^2\f$) in the rest of the domain.
*
* \f$CO_2\f$ gets injected by means of a forced-flow boundary
* condition into water-filled aquifer, which is situated 2700m below
* sea level, at the lower-right boundary (\f$5m<y<15m\f$) and
* migrates upwards due to buoyancy. It accumulates and eventually
* enters the lower permeable aquitard.
*
* The boundary conditions applied by this problem are no-flow
* conditions on the top bottom and right boundaries and a free-flow
* boundary condition on the left. For the free-flow condition,
* hydrostatic pressure is assumed.
*/
template <class TypeTag>
class Co2InjectionProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = FluidSystem::numPhases };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { liquidPhaseIdx = FluidSystem::liquidPhaseIdx };
enum { CO2Idx = FluidSystem::CO2Idx };
enum { BrineIdx = FluidSystem::BrineIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { contiCO2EqIdx = conti0EqIdx + CO2Idx };
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLaw) HeatConductionLaw;
typedef typename HeatConductionLaw::Params HeatConductionLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
Co2InjectionProblem(Simulator &simulator)
: ParentType(simulator)
{
eps_ = 1e-6;
temperatureLow_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemTemperatureLow);
temperatureHigh_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemTemperatureHigh);
nTemperature_ = EWOMS_GET_PARAM(TypeTag, int, FluidSystemNumTemperature);
nPressure_ = EWOMS_GET_PARAM(TypeTag, int, FluidSystemNumPressure);
pressureLow_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemPressureLow);
pressureHigh_ = EWOMS_GET_PARAM(TypeTag, Scalar, FluidSystemPressureHigh);
maxDepth_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxDepth);
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
// initialize the tables of the fluid system
// FluidSystem::init();
FluidSystem::init(/*Tmin=*/temperatureLow_,
/*Tmax=*/temperatureHigh_,
/*nT=*/nTemperature_,
/*pmin=*/pressureLow_,
/*pmax=*/pressureHigh_,
/*np=*/nPressure_);
fineLayerBottom_ = 22.0;
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-13);
coarseK_ = this->toDimMatrix_(1e-12);
// porosities
finePorosity_ = 0.3;
coarsePorosity_ = 0.3;
// residual saturations
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
// parameters for the Brooks-Corey law
fineMaterialParams_.setEntryPressure(1e4);
coarseMaterialParams_.setEntryPressure(5e3);
fineMaterialParams_.setLambda(2.0);
coarseMaterialParams_.setLambda(2.0);
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// parameters for the somerton law of heat conduction
computeHeatCondParams_(fineHeatCondParams_, finePorosity_);
computeHeatCondParams_(coarseHeatCondParams_, coarsePorosity_);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemTemperatureLow,
"The lower temperature [K] for tabulation of the "
"fluid system");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemTemperatureHigh,
"The upper temperature [K] for tabulation of the "
"fluid system");
EWOMS_REGISTER_PARAM(TypeTag, int, FluidSystemNumTemperature,
"The number of intervals between the lower and "
"upper temperature");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemPressureLow,
"The lower pressure [Pa] for tabulation of the "
"fluid system");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FluidSystemPressureHigh,
"The upper pressure [Pa] for tabulation of the "
"fluid system");
EWOMS_REGISTER_PARAM(TypeTag, int, FluidSystemNumPressure,
"The number of intervals between the lower and "
"upper pressure");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
"The temperature [K] in the reservoir");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, MaxDepth,
"The maximum depth [m] of the reservoir");
EWOMS_REGISTER_PARAM(TypeTag, std::string, SimulationName,
"The name of the simulation used for the output "
"files");
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << EWOMS_GET_PARAM(TypeTag, std::string, SimulationName)
<< "_" << Model::name();
if (GET_PROP_VALUE(TypeTag, EnableEnergy))
oss << "_ni";
oss << "_" << Model::discretizationName();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
Scalar tol = this->model().newtonMethod().tolerance()*5e2;
this->model().checkConservativeness(tol);
// Calculate storage terms
PrimaryVariables storageL, storageG;
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/0);
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/1);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: liquid=[" << storageL << "]"
<< " gas=[" << storageG << "]\n" << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (inHighTemperatureRegion_(pos))
return temperature_ + 100;
return temperature_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
return coarseMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
Scalar heatCapacitySolid(const Context &context, int spaceIdx,
int timeIdx) const
{
return 790 // specific heat capacity of granite [J / (kg K)]
* 2700; // density of granite [kg/m^3]
}
/*!
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
*/
template <class Context>
const HeatConductionLawParams &
heatConductionParams(const Context &context, int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineHeatCondParams_;
return coarseHeatCondParams_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
fs.checkDefined();
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate[contiCO2EqIdx] = -1e-3; // [kg/(m^3 s)]
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(gasPhaseIdx, 1.0);
fs.setPressure(gasPhaseIdx,
context.intensiveQuantities(spaceIdx, timeIdx).fluidState().pressure(
gasPhaseIdx));
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
typename FluidSystem::ParameterCache paramCache;
paramCache.updatePhase(fs, gasPhaseIdx);
Scalar h = FluidSystem::enthalpy(fs, paramCache, gasPhaseIdx);
// impose an forced inflow boundary condition
values.setMassRate(massRate);
values.setEnthalpyRate(massRate[contiCO2EqIdx] * h);
}
else
// no flow on top and bottom
values.setNoFlow();
}
// \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
int timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// const auto &matParams = this->materialLawParams(context, spaceIdx,
// timeIdx);
// values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, int spaceIdx,
int timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
template <class Context, class FluidState>
void initialFluidState_(FluidState &fs, const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
//////
// set temperature
//////
fs.setTemperature(temperature(context, spaceIdx, timeIdx));
//////
// set saturations
//////
fs.setSaturation(FluidSystem::liquidPhaseIdx, 1.0);
fs.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
//////
// set pressures
//////
Scalar densityL = FluidSystem::Brine::liquidDensity(temperature_, 1e5);
Scalar depth = maxDepth_ - pos[dim - 1];
Scalar pl = 1e5 - densityL * this->gravity()[dim - 1] * depth;
Scalar pC[numPhases];
const auto &matParams = this->materialLawParams(context, spaceIdx, timeIdx);
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(liquidPhaseIdx, pl + (pC[liquidPhaseIdx] - pC[liquidPhaseIdx]));
fs.setPressure(gasPhaseIdx, pl + (pC[gasPhaseIdx] - pC[liquidPhaseIdx]));
//////
// set composition of the liquid phase
//////
fs.setMoleFraction(liquidPhaseIdx, CO2Idx, 0.005);
fs.setMoleFraction(liquidPhaseIdx, BrineIdx,
1.0 - fs.moleFraction(liquidPhaseIdx, CO2Idx));
typename FluidSystem::ParameterCache paramCache;
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
CFRP::solve(fs, paramCache,
/*refPhaseIdx=*/liquidPhaseIdx,
/*setViscosity=*/true,
/*setEnthalpy=*/true);
}
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onInlet_(const GlobalPosition &pos) const
{ return onRightBoundary_(pos) && (5 < pos[1]) && (pos[1] < 15); }
bool inHighTemperatureRegion_(const GlobalPosition &pos) const
{ return (pos[0] > 20) && (pos[0] < 30) && (pos[1] > 5) && (pos[1] < 35); }
void computeHeatCondParams_(HeatConductionLawParams &params, Scalar poro)
{
Scalar lambdaWater = 0.6;
Scalar lambdaGranite = 2.8;
Scalar lambdaWet = std::pow(lambdaGranite, (1 - poro))
* std::pow(lambdaWater, poro);
Scalar lambdaDry = std::pow(lambdaGranite, (1 - poro));
params.setFullySaturatedLambda(gasPhaseIdx, lambdaDry);
params.setFullySaturatedLambda(liquidPhaseIdx, lambdaWet);
params.setVacuumLambda(lambdaDry);
}
bool isFineMaterial_(const GlobalPosition &pos) const
{ return pos[dim - 1] > fineLayerBottom_; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar fineLayerBottom_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
HeatConductionLawParams fineHeatCondParams_;
HeatConductionLawParams coarseHeatCondParams_;
Scalar temperature_;
Scalar maxDepth_;
Scalar eps_;
int nTemperature_;
int nPressure_;
Scalar pressureLow_, pressureHigh_;
Scalar temperatureLow_, temperatureHigh_;
};
} // namespace Ewoms
#endif