Files
opm-simulators/opm/polymer/polymermodel.cpp
2012-02-06 08:54:38 +01:00

231 lines
6.2 KiB
C++

/* Copyright 2011 (c) Jostein R. Natvig <Jostein.R.Natvig at sintef.no> */
/* Copyright 2012 (c) SINTEF */
#include <opm/polymer/polymermodel.hpp>
#include <opm/core/grid.h>
#include <opm/core/transport/reorder/nlsolvers.h>
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
#include <cstdlib>
#include <cstdio>
#include <cmath>
/* Parameters used in solution of single-cell boundary-value problem */
struct ParametersSRes
{
double c;
double s0;
// double c0;
double dtpv; /* dt/pv(i) */
double influx; /* sum_j min(v_ij, 0)*f(s_j) */
// double influx_polymer;
double outflux; /* sum_j max(v_ij, 0) */
// double dps;
// double rhor;
// double phi;
int cell;
const Opm::IncompPropertiesInterface* props;
const PolymerData* polydata;
};
struct ParametersCRes
{
PolymerSolverData* psdata;
int cell;
NonlinearSolverCtrl* ctrl;
double s;
};
static struct ParametersSRes get_parameters_s(struct PolymerSolverData *d, int cell);
static struct ParametersCRes get_parameters_c(struct PolymerSolverData *d, int cell,
NonlinearSolverCtrl* ctrl);
static double residual_s(double s, void *data);
static double residual_c(double c, void *data);
static double fluxfun_props(double s,
double c,
int cell,
const Opm::IncompPropertiesInterface* props,
const PolymerData* polydata);
void
destroy_solverdata(struct PolymerSolverData *d)
{
if (d!=NULL)
{
free(d->fractionalflow);
}
free(d);
}
struct PolymerSolverData *
init_solverdata(struct UnstructuredGrid *grid,
const Opm::IncompPropertiesInterface* props,
const PolymerData* polydata,
const double *darcyflux,
const double *porevolume,
const double *source,
const double dt,
double *saturation,
double *concentration)
{
int i;
struct PolymerSolverData *d = (struct PolymerSolverData*) malloc(sizeof *d);
if(d!=NULL)
{
d->grid = grid;
d->props = props;
d->polydata = polydata;
d->darcyflux = darcyflux;
d->porevolume = porevolume;
d->source = source;
d->dt = dt;
d->saturation = saturation;
d->concentration = concentration;
d->fractionalflow = (double*) malloc(grid->number_of_cells *
sizeof *d->fractionalflow);
if (d->fractionalflow == NULL)
{
destroy_solverdata(d);
d = NULL;
}
for(i=0; i<grid->number_of_cells; ++i)
{
d->fractionalflow[i] = 0.0;
}
}
return d;
}
/* Solver for single-cell bvp calls root-finder in nlsolvers.c */
void polymer_solvecell(void *data, struct NonlinearSolverCtrl *ctrl, int cell)
{
struct PolymerSolverData *d = (struct PolymerSolverData*) data;
struct ParametersCRes prm = get_parameters_c(d, cell, ctrl);
d->concentration[cell] = find_zero(residual_c, &prm, ctrl);
d->saturation[cell] = prm.s;
d->fractionalflow[cell] = fluxfun_props(d->saturation[cell], d->concentration[cell], cell, d->props, d->polydata);
}
/* ====================== Internals =================================*/
/* Residual function r(s) for a single-cell bvp */
/*
* r(s) = s - s0 + dt/pv*(influx - outflux*f(s) )
*/
/* influx is water influx, outflux is total outflux */
static double
residual_s(double s, void *data)
{
struct ParametersSRes *p = (struct ParametersSRes*) data;
double c = p->c;
return s - p->s0 + p->dtpv*(p->outflux*fluxfun_props(s, c, p->cell, p->props, p->polydata) + p->influx);
}
static double
residual_c(double c, void *data)
{
struct ParametersCRes *prm_c = (struct ParametersCRes*) data;
int cell = prm_c->cell;
struct ParametersSRes prm_s = get_parameters_s(prm_c->psdata, cell);
prm_s.c = c;
double s = find_zero(residual_s, &prm_s, prm_c->ctrl);
prm_c->s = s;
return 0.0;
}
static struct ParametersSRes
get_parameters_s(struct PolymerSolverData *d, int cell)
{
int i;
struct UnstructuredGrid *g = d->grid;
struct ParametersSRes p;
double flux;
int f, other;
p.c = d->concentration[cell];
p.s0 = d->saturation[cell];
p.influx = d->source[cell] > 0 ? -d->source[cell] : 0.0;
p.outflux = d->source[cell] <= 0 ? -d->source[cell] : 0.0;
p.dtpv = d->dt/d->porevolume[cell];
p.cell = cell;
p.props = d->props;
d->saturation[cell] = 0;
for (i=g->cell_facepos[cell]; i<g->cell_facepos[cell+1]; ++i) {
f = g->cell_faces[i];
/* Compute cell flux*/
if (cell == g->face_cells[2*f]) {
flux = d->darcyflux[f];
other = g->face_cells[2*f+1];
}
else {
flux =-d->darcyflux[f];
other = g->face_cells[2*f];
}
if (other != -1) {
if (flux < 0.0) {
p.influx += flux*d->fractionalflow[other];
}
else {
p.outflux += flux;
}
}
}
p.polydata = d->polydata;
return p;
}
static struct ParametersCRes
get_parameters_c(struct PolymerSolverData *d, int cell, NonlinearSolverCtrl* ctrl)
{
ParametersCRes prm;
prm.psdata = d;
prm.cell = cell;
prm.ctrl = ctrl;
prm.s = -1e100;
return prm;
}
static double fluxfun_props(double s, double c, int cell,
const Opm::IncompPropertiesInterface* props,
const PolymerData* pd)
{
const double* visc = props->viscosity();
double c_max_limit = pd->c_max_limit;
double cbar = c/c_max_limit;
double mu_w = visc[0];
double mu_m = pd->viscMult(c)*mu_w;
double mu_p = pd->viscMult(pd->c_max_limit)*mu_w;
double omega = pd->omega;
double mu_m_omega = std::pow(mu_m, omega);
double mu_w_e = mu_m_omega*std::pow(mu_w, 1.0 - omega);
double mu_p_eff = mu_m_omega*std::pow(mu_p, 1.0 - omega);
double inv_mu_w_eff = (1.0 - cbar)/mu_w_e + cbar/mu_p_eff;
double inv_visc_eff[2] = { inv_mu_w_eff, 1.0/visc[1] };
double sat[2] = { s, 1.0 - s };
double mob[2];
props->relperm(1, sat, &cell, mob, NULL);
mob[0] *= inv_visc_eff[0];
mob[1] *= inv_visc_eff[1];
return mob[0]/(mob[0] + mob[1]);
}
/* Local Variables: */
/* c-basic-offset:4 */
/* End: */