opm-simulators/opm/autodiff/NewtonIterationBlackoilCPR.hpp
2015-02-12 10:41:44 +01:00

118 lines
5.4 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_NEWTONITERATIONBLACKOILCPR_HEADER_INCLUDED
#define OPM_NEWTONITERATIONBLACKOILCPR_HEADER_INCLUDED
#include <opm/autodiff/DuneMatrix.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <opm/autodiff/CPRPreconditioner.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/bvector.hh>
#include <memory>
namespace Opm
{
/// This class solves the fully implicit black-oil system by
/// applying a Constrained Pressure Residual preconditioning
/// strategy.
/// The approach is similar to the one described in
/// "Preconditioning for Efficiently Applying Algebraic Multigrid
/// in Fully Implicit Reservoir Simulations" by Gries et al (SPE 163608).
class NewtonIterationBlackoilCPR : public NewtonIterationBlackoilInterface
{
typedef Dune::FieldVector<double, 1 > VectorBlockType;
typedef Dune::FieldMatrix<double, 1, 1> MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> Vector;
public:
/// Construct a system solver.
/// \param[in] param parameters controlling the behaviour of
/// the preconditioning and choice of
/// linear solvers.
/// Parameters:
/// cpr_relax (default 1.0) relaxation for the preconditioner
/// cpr_ilu_n (default 0) use ILU(n) for preconditioning of the linear system
/// cpr_use_amg (default false) if true, use AMG preconditioner for elliptic part
/// cpr_use_bicgstab (default true) if true, use BiCGStab (else use CG) for elliptic part
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
NewtonIterationBlackoilCPR(const parameter::ParameterGroup& param,
const boost::any& parallelInformation=boost::any());
/// Solve the system of linear equations Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
virtual SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const;
/// \copydoc NewtonIterationBlackoilInterface::iterations
virtual int iterations () const { return iterations_; }
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
virtual const boost::any& parallelInformation() const;
private:
/// \brief construct the CPR preconditioner and the solver.
/// \tparam P The type of the parallel information.
/// \param parallelInformation the information about the parallelization.
template<int category=Dune::SolverCategory::sequential, class O, class P>
void constructPreconditionerAndSolve(O& opA, DuneMatrix& istlAe,
Vector& x, Vector& istlb,
const P& parallelInformation,
Dune::InverseOperatorResult& result) const
{
typedef Dune::ScalarProductChooser<Vector,P,category> ScalarProductChooser;
std::unique_ptr<typename ScalarProductChooser::ScalarProduct>
sp(ScalarProductChooser::construct(parallelInformation));
// Construct preconditioner.
// typedef Dune::SeqILU0<Mat,Vector,Vector> Preconditioner;
typedef Opm::CPRPreconditioner<Mat,Vector,Vector,P> Preconditioner;
Preconditioner precond(opA.getmat(), istlAe, cpr_relax_, cpr_ilu_n_, cpr_use_amg_, cpr_use_bicgstab_, parallelInformation);
// Construct linear solver.
const double tolerance = 1e-3;
const int maxit = 150;
const int verbosity = 0;
const int restart = 40;
Dune::RestartedGMResSolver<Vector> linsolve(opA, *sp, precond, tolerance, restart, maxit, verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
mutable int iterations_;
double cpr_relax_;
unsigned int cpr_ilu_n_;
bool cpr_use_amg_;
bool cpr_use_bicgstab_;
const boost::any& parallelInformation_;
};
} // namespace Opm
#endif // OPM_NEWTONITERATIONBLACKOILCPR_HEADER_INCLUDED