opm-simulators/opm/core/newwells.h

186 lines
7.1 KiB
C

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_NEWWELLS_H_INCLUDED
#define OPM_NEWWELLS_H_INCLUDED
/**
* \file
*
* Main OPM-Core well data structure along with functions
* to create, populate and destroy it.
*/
#ifdef __cplusplus
extern "C" {
#endif
/** Well type indicates desired/expected well behaviour. */
enum WellType { INJECTOR, PRODUCER };
/** Type of well control equation or inequality constraint.
* BHP -> Well constrained by bottom-hole pressure target.
* RATE -> Well constrained by total reservoir volume flow rate.
*/
enum WellControlType { BHP , RATE };
/** Canonical component names and ordering. */
enum SurfaceComponent { WATER = 0, OIL = 1, GAS = 2 };
/** Controls for a single well.
* Each control specifies a well rate or bottom-hole pressure. Only
* one control can be active at a time, indicated by current. The
* meaning of each control's target value depends on the control
* type, for BHP controls it is a pressure in Pascal, for RATE
* controls it is a volumetric rate in cubic(meter)/second. The
* active control as an equality constraint, whereas the
* non-active controls should be interpreted as inequality
* constraints (upper or lower bounds). For instance, a PRODUCER's BHP
* constraint defines a minimum acceptable bottom-hole pressure value
* for the well.
*/
struct WellControls
{
int num; /** Number of controls. */
enum WellControlType *type; /** Array of control types. */
double *target; /** Array of control targets. */
int current; /** Index of current active control. */
void *data; /** Internal management structure. */
};
/** Data structure aggregating static information about all wells in a scenario. */
struct Wells
{
int number_of_wells; /** Number of wells. */
enum WellType *type; /** Array of well types. */
double *depth_ref; /** Array of well bhp reference depths. */
double *zfrac; /** Component volume fractions for each well, size is (3*number_of_wells).
* This is intended to be used for injection wells. For production wells
* the component fractions will vary and cannot be specified a priori.
*/
int *well_connpos; /** Array of indices into well_cells (and WI).
* For a well w, well_connpos[w] and well_connpos[w+1] yield
* start and one-beyond-end indices into the well_cells array
* for accessing w's perforation cell indices.
*/
int *well_cells; /** Array of perforation cell indices.
* Size is number of perforations (== well_connpos[number_of_wells]).
*/
double *WI; /** Well productivity index, same size and structure as well_cells. */
struct WellControls **ctrls; /** Well controls, one set of controls for each well. */
void *data; /** Internal management structure. */
};
/** Data structure aggregating dynamic information about all wells in a scenario.
* All arrays in this structure contain data for each perforation,
* ordered the same as Wells::well_cells and Wells:WI. The array
* sizes are, respectively,
*
* gpot n*NP
* A n²*NP (matrix in column-major (i.e., Fortran) order).
* phasemob n*NP
*
* in which "n" denotes the number of active fluid phases (and
* constituent components) and "NP" is the total number of
* perforations, <CODE>well_connpos[ number_of_wells ]</CODE>.
*/
struct CompletionData
{
double *gpot; /** Gravity potentials. */
double *A; /** Volumes to surface-components matrix, A = RB^{-1}. */
double *phasemob; /** Phase mobilities. */
};
/** Contruction function initializing a Wells object.
* The arguments may be used to indicate expected capacity needed,
* they will be used internally for pre-allocation.
* \return NULL upon failure, otherwise a valid Wells object with 0 wells.
* Call add_well() to populate the Wells object.
* Call destroy_wells() to deallocate and clean up the Wells object.
*/
struct Wells *
create_wells(int nwells_reserve_cap, int nperf_reserve_cap);
/** Append a new well to an existing Wells object.
* If successful, W->number_of_wells is incremented by 1.
* The newly added well will have no controls associated with it, add
* controls using append_well_controls(). The current control index is set
* to -1 (invalid).
* \param[in] type Type of well.
* \param[in] depth_ref Reference depth for bhp.
* \param[in] nperf Number of perforations.
* \param[in] zfrac Injection fraction (three components) or NULL.
* \param[in] cells Perforation cell indices.
* \param[in] WI Well production index per perforation, or NULL.
* \param[inout] W The Wells object to be modified.
* \return 1 if successful, 0 if failed.
*/
int
add_well(enum WellType type ,
double depth_ref,
int nperf ,
const double *zfrac ,
const int *cells ,
const double *WI ,
struct Wells *W );
/** Append a control to a well.
* If successful, ctrl->num is incremented by 1.
* Note that this function does not change ctrl->current.
* To append a control to a well with index w, pass its
* controls to this function via wellsptr->ctrls[w].
* \param[in] type Control type.
* \param[in] target Target value for the control.
* \param[inout] ctrl The WellControls object to be modified.
* \return 1 if successful, 0 if failed.
*/
int
append_well_controls(enum WellControlType type ,
double target,
struct WellControls *ctrl );
/** Clear all controls from a well. */
void
clear_well_controls(struct WellControls *ctrl);
/** Destruction function for Wells objects.
* Assumes that create_wells() and add_wells() have been used to
* build the object.
*/
void
destroy_wells(struct Wells *W);
#ifdef __cplusplus
}
#endif
#endif /* OPM_NEWWELLS_H_INCLUDED */