opm-simulators/ebos/eclproblem.hh
Bård Skaflestad c52ab4ccd5
Merge pull request #4347 from atgeirr/afr_well_assemble_separate
Implement functionality to add well source terms to the residual separately
2023-03-31 11:10:01 +02:00

3113 lines
125 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
#if USE_ALUGRID
#define DISABLE_ALUGRID_SFC_ORDERING 1
#include "eclalugridvanguard.hh"
#elif USE_POLYHEDRALGRID
#include "eclpolyhedralgridvanguard.hh"
#else
#include "eclcpgridvanguard.hh"
#endif
#include "eclactionhandler.hh"
#include "eclequilinitializer.hh"
#include "eclwriter.hh"
#include "ecloutputblackoilmodule.hh"
#include "ecltransmissibility.hh"
#include "eclthresholdpressure.hh"
#include "ecldummygradientcalculator.hh"
#include "eclfluxmodule.hh"
#include "eclbaseaquifermodel.hh"
#include "eclnewtonmethod.hh"
#include "ecltracermodel.hh"
#include "vtkecltracermodule.hh"
#include "eclgenericproblem.hh"
#include "FIBlackOilModel.hpp"
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/utils/ParallelSerialization.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/models/common/directionalmobility.hh>
#include <opm/models/utils/pffgridvector.hh>
#include <opm/models/blackoil/blackoilmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/thermal/EclThermalLawManager.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/utility/CopyablePtr.hpp>
#include <opm/material/common/ConditionalStorage.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <set>
#include <vector>
#include <string>
#include <algorithm>
#include <functional>
namespace Opm {
template <class TypeTag>
class EclProblem;
}
namespace Opm::Properties {
namespace TTag {
#if USE_ALUGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclAluGridVanguard>;
};
#elif USE_POLYHEDRALGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclPolyhedralGridVanguard>;
};
#else
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>;
};
#endif
}
// The class which deals with ECL wells
template<class TypeTag, class MyTypeTag>
struct EclWellModel {
using type = UndefinedProperty;
};
// Write all solutions for visualization, not just the ones for the
// report steps...
template<class TypeTag, class MyTypeTag>
struct EnableWriteAllSolutions {
using type = UndefinedProperty;
};
// The number of time steps skipped between writing two consequtive restart files
template<class TypeTag, class MyTypeTag>
struct RestartWritingInterval {
using type = UndefinedProperty;
};
// Enable partial compensation of systematic mass losses via the source term of the next time
// step
template<class TypeTag, class MyTypeTag>
struct EclEnableDriftCompensation {
using type = UndefinedProperty;
};
// Enable the additional checks even if compiled in debug mode (i.e., with the NDEBUG
// macro undefined). Next to a slightly better performance, this also eliminates some
// print statements in debug mode.
template<class TypeTag, class MyTypeTag>
struct EnableDebuggingChecks {
using type = UndefinedProperty;
};
// if thermal flux boundaries are enabled an effort is made to preserve the initial
// thermal gradient specified via the TEMPVD keyword
template<class TypeTag, class MyTypeTag>
struct EnableThermalFluxBoundaries {
using type = UndefinedProperty;
};
// Specify whether API tracking should be enabled (replaces PVT regions).
// TODO: This is not yet implemented
template<class TypeTag, class MyTypeTag>
struct EnableApiTracking {
using type = UndefinedProperty;
};
// The class which deals with ECL aquifers
template<class TypeTag, class MyTypeTag>
struct EclAquiferModel {
using type = UndefinedProperty;
};
// In experimental mode, decides if the aquifer model should be enabled or not
template<class TypeTag, class MyTypeTag>
struct EclEnableAquifers {
using type = UndefinedProperty;
};
// time stepping parameters
template<class TypeTag, class MyTypeTag>
struct EclMaxTimeStepSizeAfterWellEvent {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclRestartShrinkFactor {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclEnableTuning {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct OutputMode {
using type = UndefinedProperty;
};
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::EclBaseProblem> {
using type = EclProblem<TypeTag>;
};
template<class TypeTag>
struct Model<TypeTag, TTag::EclBaseProblem> {
using type = FIBlackOilModel<TypeTag>;
};
// Select the element centered finite volume method as spatial discretization
template<class TypeTag>
struct SpatialDiscretizationSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::EcfvDiscretization;
};
//! for ebos, use automatic differentiation to linearize the system of PDEs
template<class TypeTag>
struct LocalLinearizerSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::AutoDiffLocalLinearizer;
};
// Set the material law for fluid fluxes
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits = ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;
using type = typename EclMaterialLawManager::MaterialLaw;
};
// Set the material law for energy storage in rock
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
using type = typename EclThermalLawManager::SolidEnergyLaw;
};
// Set the material law for thermal conduction
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
using type = typename EclThermalLawManager::ThermalConductionLaw;
};
// ebos can use a slightly faster stencil class because it does not need the normals and
// the integration points of intersections
template<class TypeTag>
struct Stencil<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
public:
using type = EcfvStencil<Scalar,
GridView,
/*needIntegrationPos=*/false,
/*needNormal=*/false>;
};
// by default use the dummy aquifer "model"
template<class TypeTag>
struct EclAquiferModel<TypeTag, TTag::EclBaseProblem> {
using type = EclBaseAquiferModel<TypeTag>;
};
// Enable aquifers by default in experimental mode
template<class TypeTag>
struct EclEnableAquifers<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable diffusion
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// only write the solutions for the report steps to disk
template<class TypeTag>
struct EnableWriteAllSolutions<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable API tracking
template<class TypeTag>
struct EnableApiTracking<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
template<class TypeTag>
struct EndTime<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e100;
};
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24;
};
// the default for the allowed volumetric error for oil per second
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-2;
};
// the tolerated amount of "incorrect" amount of oil per time step for the complete
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
// will tolerate larger residuals.
template<class TypeTag>
struct EclNewtonSumTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-4;
};
// set the exponent for the volume scaling of the sum tolerance: larger reservoirs can
// tolerate a higher amount of mass lost per time step than smaller ones! since this is
// not linear, we use the cube root of the overall pore volume by default, i.e., the
// value specified by the NewtonSumTolerance parameter is the "incorrect" mass per
// timestep for an reservoir that exhibits 1 m^3 of pore volume. A reservoir with a total
// pore volume of 10^3 m^3 will tolerate 10 times as much.
template<class TypeTag>
struct EclNewtonSumToleranceExponent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0/3.0;
};
// set number of Newton iterations where the volumetric residual is considered for
// convergence
template<class TypeTag>
struct EclNewtonStrictIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 8;
};
// set fraction of the pore volume where the volumetric residual may be violated during
// strict Newton iterations
template<class TypeTag>
struct EclNewtonRelaxedVolumeFraction<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.03;
};
// the maximum volumetric error of a cell in the relaxed region
template<class TypeTag>
struct EclNewtonRelaxedTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e9;
};
// Ignore the maximum error mass for early termination of the newton method.
template<class TypeTag>
struct NewtonMaxError<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 10e9;
};
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
// step succeeds at more than 14 Newton iteration is rather small
template<class TypeTag>
struct NewtonMaxIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 14;
};
// also, reduce the target for the "optimum" number of Newton iterations to 6. Note that
// this is only relevant if the time step is reduced from the report step size for some
// reason. (because ebos first tries to do a report step using a single time step.)
template<class TypeTag>
struct NewtonTargetIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 6;
};
// Disable the VTK output by default for this problem ...
template<class TypeTag>
struct EnableVtkOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// ... but enable the ECL output by default
template<class TypeTag>
struct EnableEclOutput<TypeTag,TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#ifdef HAVE_DAMARIS
//! Enable the Damaris output by default
template<class TypeTag>
struct EnableDamarisOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// If Damaris is available, write specific variable output in parallel
template<class TypeTag>
struct EnableDamarisOutputCollective<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#endif
// If available, write the ECL output in a non-blocking manner
template<class TypeTag>
struct EnableAsyncEclOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Write ESMRY file for fast loading of summary data
template<class TypeTag>
struct EnableEsmry<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, use single precision for the ECL formated results
template<class TypeTag>
struct EclOutputDoublePrecision<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default location for the ECL output files
template<class TypeTag>
struct OutputDir<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = ".";
};
// the cache for intensive quantities can be used for ECL problems and also yields a
// decent speedup...
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// the cache for the storage term can also be used and also yields a decent speedup
template<class TypeTag>
struct EnableStorageCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
template<class TypeTag>
struct FluxModule<TypeTag, TTag::EclBaseProblem> {
using type = EclTransFluxModule<TypeTag>;
};
// Use the dummy gradient calculator in order not to do unnecessary work.
template<class TypeTag>
struct GradientCalculator<TypeTag, TTag::EclBaseProblem> {
using type = EclDummyGradientCalculator<TypeTag>;
};
// Use a custom Newton-Raphson method class for ebos in order to attain more
// sophisticated update and error computation mechanisms
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::EclBaseProblem> {
using type = EclNewtonMethod<TypeTag>;
};
// The frequency of writing restart (*.ers) files. This is the number of time steps
// between writing restart files
template<class TypeTag>
struct RestartWritingInterval<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 0xffffff; // disable
};
// Drift compensation is an experimental feature, i.e., systematic errors in the
// conservation quantities are only compensated for
// as default if experimental mode is enabled.
template<class TypeTag>
struct EclEnableDriftCompensation<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// By default, we enable the debugging checks if we're compiled in debug mode
template<class TypeTag>
struct EnableDebuggingChecks<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// store temperature (but do not conserve energy, as long as EnableEnergy is false)
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableExtbo<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable thermal flux boundaries by default
template<class TypeTag>
struct EnableThermalFluxBoundaries<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, simulators derived from the EclBaseProblem are production simulators,
// i.e., experimental features must be explicitly enabled at compile time
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// set defaults for the time stepping parameters
template<class TypeTag>
struct EclMaxTimeStepSizeAfterWellEvent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24*365.25;
};
template<class TypeTag>
struct EclRestartShrinkFactor<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3;
};
template<class TypeTag>
struct EclEnableTuning<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct OutputMode<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = "all";
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class EclProblem : public GetPropType<TypeTag, Properties::BaseProblem>
, public EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>
{
using BaseType = EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>;
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { enableExperiments = getPropValue<TypeTag, Properties::EnableExperiments>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
enum { enablePolymerMolarWeight = getPropValue<TypeTag, Properties::EnablePolymerMW>() };
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableThermalFluxBoundaries = getPropValue<TypeTag, Properties::EnableThermalFluxBoundaries>() };
enum { enableApiTracking = getPropValue<TypeTag, Properties::EnableApiTracking>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using EclMaterialLawManager = typename GetProp<TypeTag, Properties::MaterialLaw>::EclMaterialLawManager;
using EclThermalLawManager = typename GetProp<TypeTag, Properties::SolidEnergyLaw>::EclThermalLawManager;
using MaterialLawParams = typename EclMaterialLawManager::MaterialLawParams;
using SolidEnergyLawParams = typename EclThermalLawManager::SolidEnergyLawParams;
using ThermalConductionLawParams = typename EclThermalLawManager::ThermalConductionLawParams;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using EclWellModel = GetPropType<TypeTag, Properties::EclWellModel>;
using EclAquiferModel = GetPropType<TypeTag, Properties::EclAquiferModel>;
using SolventModule = BlackOilSolventModule<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using ExtboModule = BlackOilExtboModule<TypeTag>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using InitialFluidState = typename EclEquilInitializer<TypeTag>::ScalarFluidState;
using Toolbox = MathToolbox<Evaluation>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using EclWriterType = EclWriter<TypeTag>;
using TracerModel = EclTracerModel<TypeTag>;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
public:
using EclGenericProblem<GridView,FluidSystem,Scalar>::briefDescription;
using EclGenericProblem<GridView,FluidSystem,Scalar>::helpPreamble;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteOutput;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteRestartFile;
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxTimeIntegrationFailures;
using EclGenericProblem<GridView,FluidSystem,Scalar>::minTimeStepSize;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockCompressibility;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockReferencePressure;
using EclGenericProblem<GridView,FluidSystem,Scalar>::porosity;
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EclWriterType::registerParameters();
VtkEclTracerModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
"Write binary output which is compatible with the commercial "
"Eclipse simulator");
#ifdef HAVE_DAMARIS
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableDamarisOutput,
"Write a specific variable using Damaris in a separate core");
#endif
EWOMS_REGISTER_PARAM(TypeTag, bool, EclOutputDoublePrecision,
"Tell the output writer to use double precision. Useful for 'perfect' restarts");
EWOMS_REGISTER_PARAM(TypeTag, unsigned, RestartWritingInterval,
"The frequencies of which time steps are serialized to disk");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableDriftCompensation,
"Enable partial compensation of systematic mass losses via the source term of the next time step");
if constexpr (enableExperiments)
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableAquifers,
"Enable analytic and numeric aquifer models");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclMaxTimeStepSizeAfterWellEvent,
"Maximum time step size after an well event");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclRestartShrinkFactor,
"Factor by which the time step is reduced after convergence failure");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableTuning,
"Honor some aspects of the TUNING keyword from the ECL deck.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, OutputMode,
"Specify which messages are going to be printed. Valid values are: none, log, all (default)");
}
/*!
* \copydoc FvBaseProblem::handlePositionalParameter
*/
static int handlePositionalParameter(std::set<std::string>& seenParams,
std::string& errorMsg,
int,
const char** argv,
int paramIdx,
int)
{
using ParamsMeta = GetProp<TypeTag, Properties::ParameterMetaData>;
Dune::ParameterTree& tree = ParamsMeta::tree();
return eclPositionalParameter(tree,
seenParams,
errorMsg,
argv,
paramIdx);
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
EclProblem(Simulator& simulator)
: ParentType(simulator)
, EclGenericProblem<GridView,FluidSystem,Scalar>(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().gridView())
, transmissibilities_(simulator.vanguard().eclState(),
simulator.vanguard().gridView(),
simulator.vanguard().cartesianIndexMapper(),
simulator.vanguard().grid(),
simulator.vanguard().cellCentroids(),
enableEnergy,
enableDiffusion)
, thresholdPressures_(simulator)
, wellModel_(simulator)
, aquiferModel_(simulator)
, pffDofData_(simulator.gridView(), this->elementMapper())
, tracerModel_(simulator)
, actionHandler_(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().actionState(),
simulator.vanguard().summaryState(),
wellModel_,
simulator.vanguard().grid().comm())
{
this->model().addOutputModule(new VtkEclTracerModule<TypeTag>(simulator));
// Tell the black-oil extensions to initialize their internal data structures
const auto& vanguard = simulator.vanguard();
SolventModule::initFromState(vanguard.eclState(), vanguard.schedule());
PolymerModule::initFromState(vanguard.eclState());
FoamModule::initFromState(vanguard.eclState());
BrineModule::initFromState(vanguard.eclState());
ExtboModule::initFromState(vanguard.eclState());
MICPModule::initFromState(vanguard.eclState());
// create the ECL writer
eclWriter_ = std::make_unique<EclWriterType>(simulator);
enableDriftCompensation_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableDriftCompensation);
enableEclOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput);
if constexpr (enableExperiments)
enableAquifers_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableAquifers);
else
enableAquifers_ = true;
this->enableTuning_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableTuning);
this->initialTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
this->minTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, MinTimeStepSize);
this->maxTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxTimeStepSize);
this->maxTimeStepAfterWellEvent_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclMaxTimeStepSizeAfterWellEvent);
this->restartShrinkFactor_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclRestartShrinkFactor);
this->maxFails_ = EWOMS_GET_PARAM(TypeTag, unsigned, MaxTimeStepDivisions);
RelpermDiagnostics relpermDiagnostics;
relpermDiagnostics.diagnosis(vanguard.eclState(), vanguard.cartesianIndexMapper());
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
const auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
// Set the start time of the simulation
simulator.setStartTime(schedule.getStartTime());
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented by endEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
// disables gravity, else the standard value of the gravity constant at sea level
// on earth is used
this->gravity_ = 0.0;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_[dim - 1] = 9.80665;
if (!eclState.getInitConfig().hasGravity())
this->gravity_[dim - 1] = 0.0;
if (this->enableTuning_) {
// if support for the TUNING keyword is enabled, we get the initial time
// steping parameters from it instead of from command line parameters
const auto& tuning = schedule[0].tuning();
this->initialTimeStepSize_ = tuning.TSINIT;
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
this->maxTimeStepSize_ = tuning.TSMAXZ;
this->restartShrinkFactor_ = 1./tuning.TSFCNV;
this->minTimeStepSize_ = tuning.TSMINZ;
}
this->initFluidSystem_();
// deal with DRSDT
this->initDRSDT_(this->model().numGridDof(), this->episodeIndex());
this->readRockParameters_(simulator.vanguard().cellCenterDepths());
readMaterialParameters_();
readThermalParameters_();
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> gridToEquilGrid;
#if USE_ALUGRID
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
#endif // USE_ALUGRID
transmissibilities_.finishInit(gridToEquilGrid);
const auto& initconfig = eclState.getInitConfig();
tracerModel_.init(initconfig.restartRequested());
if (initconfig.restartRequested())
readEclRestartSolution_();
else
readInitialCondition_();
tracerModel_.prepareTracerBatches();
updatePffDofData_();
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
int numElements = gridView.size(/*codim=*/0);
this->maxPolymerAdsorption_.resize(numElements, 0.0);
}
readBoundaryConditions_();
// compute and set eq weights based on initial b values
computeAndSetEqWeights_();
if (enableDriftCompensation_) {
drift_.resize(this->model().numGridDof());
drift_ = 0.0;
}
// write the static output files (EGRID, INIT, SMSPEC, etc.)
if (enableEclOutput_) {
if (simulator.vanguard().grid().comm().size() > 1) {
if (simulator.vanguard().grid().comm().rank() == 0)
eclWriter_->setTransmissibilities(&simulator.vanguard().globalTransmissibility());
} else
eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities());
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid;
#if USE_ALUGRID
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
#endif // USE_ALUGRID
eclWriter_->writeInit(equilGridToGrid);
}
simulator.vanguard().releaseGlobalTransmissibilities();
// after finishing the initialization and writing the initial solution, we move
// to the first "real" episode/report step
// for restart the episode index and start is already set
if (!initconfig.restartRequested()) {
simulator.startNextEpisode(schedule.seconds(1));
simulator.setEpisodeIndex(0);
}
}
void prefetch(const Element& elem) const
{ pffDofData_.prefetch(elem); }
/*!
* \brief This method restores the complete state of the problem and its sub-objects
* from disk.
*
* The serialization format used by this method is ad-hoc. It is the inverse of the
* serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
// reload the current episode/report step from the deck
beginEpisode();
// deserialize the wells
wellModel_.deserialize(res);
if (enableAquifers_)
// deserialize the aquifer
aquiferModel_.deserialize(res);
}
/*!
* \brief This method writes the complete state of the problem and its subobjects to
* disk.
*
* The file format used here is ad-hoc.
*/
template <class Restarter>
void serialize(Restarter& res)
{
wellModel_.serialize(res);
if (enableAquifers_)
aquiferModel_.serialize(res);
}
int episodeIndex() const
{
return std::max(this->simulator().episodeIndex(), 0);
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode()
{
OPM_TIMEBLOCK(beginEpisode);
// Proceed to the next report step
auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
const auto& events = schedule[episodeIdx].events();
if (episodeIdx >= 0 && events.hasEvent(ScheduleEvents::GEO_MODIFIER)) {
// bring the contents of the keywords to the current state of the SCHEDULE
// section.
//
// TODO (?): make grid topology changes possible (depending on what exactly
// has changed, the grid may need be re-created which has some serious
// implications on e.g., the solution of the simulation.)
const auto& miniDeck = schedule[episodeIdx].geo_keywords();
const auto& cc = simulator.vanguard().grid().comm();
eclState.apply_schedule_keywords( miniDeck );
eclBroadcast(cc, eclState.getTransMult() );
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid;
#if USE_ALUGRID
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
#endif // USE_ALUGRID
// re-compute all quantities which may possibly be affected.
transmissibilities_.update(true, equilGridToGrid);
this->referencePorosity_[1] = this->referencePorosity_[0];
updateReferencePorosity_();
updatePffDofData_();
this->model().linearizer().updateDiscretizationParameters();
}
bool tuningEvent = this->beginEpisode_(enableExperiments, this->episodeIndex());
// set up the wells for the next episode.
wellModel_.beginEpisode();
// set up the aquifers for the next episode.
if (enableAquifers_)
// set up the aquifers for the next episode.
aquiferModel_.beginEpisode();
// set the size of the initial time step of the episode
Scalar dt = limitNextTimeStepSize_(simulator.episodeLength());
if (episodeIdx == 0 || tuningEvent)
// allow the size of the initial time step to be set via an external parameter
// if TUNING is enabled, also limit the time step size after a tuning event to TSINIT
dt = std::min(dt, this->initialTimeStepSize_);
simulator.setTimeStepSize(dt);
// Evaluate UDQ assign statements to make sure the settings are
// available as UDA controls for the current report step.
actionHandler_.evalUDQAssignments(episodeIdx, simulator.vanguard().udqState());
}
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{
OPM_TIMEBLOCK(beginTimeStep);
int episodeIdx = this->episodeIndex();
this->beginTimeStep_(enableExperiments,
episodeIdx,
this->simulator().timeStepIndex(),
this->simulator().startTime(),
this->simulator().time(),
this->simulator().timeStepSize(),
this->simulator().endTime());
// update maximum water saturation and minimum pressure
// used when ROCKCOMP is activated
asImp_().updateExplicitQuantities_();
wellModel_.beginTimeStep();
if (enableAquifers_)
aquiferModel_.beginTimeStep();
tracerModel_.beginTimeStep();
}
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{
OPM_TIMEBLOCK(beginIteration);
wellModel_.beginIteration();
if (enableAquifers_)
aquiferModel_.beginIteration();
}
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{
OPM_TIMEBLOCK(endIteration);
wellModel_.endIteration();
if (enableAquifers_)
aquiferModel_.endIteration();
}
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
OPM_TIMEBLOCK(endTimeStep);
#ifndef NDEBUG
if constexpr (getPropValue<TypeTag, Properties::EnableDebuggingChecks>()) {
// in debug mode, we don't care about performance, so we check if the model does
// the right thing (i.e., the mass change inside the whole reservoir must be
// equivalent to the fluxes over the grid's boundaries plus the source rates
// specified by the problem)
int rank = this->simulator().gridView().comm().rank();
if (rank == 0)
std::cout << "checking conservativeness of solution\n";
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
if (rank == 0)
std::cout << "solution is sufficiently conservative\n";
}
#endif // NDEBUG
auto& simulator = this->simulator();
wellModel_.endTimeStep();
if (enableAquifers_)
aquiferModel_.endTimeStep();
tracerModel_.endTimeStep();
// deal with DRSDT and DRVDT
asImp_().updateCompositionChangeLimits_();
{
OPM_TIMEBLOCK(driftCompansation);
asImp_().updateCompositionChangeLimits_();
if (enableDriftCompensation_) {
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
drift_[globalDofIdx] = residual[globalDofIdx];
drift_[globalDofIdx] *= simulator.timeStepSize();
if constexpr (getPropValue<TypeTag, Properties::UseVolumetricResidual>())
drift_[globalDofIdx] *= this->model().dofTotalVolume(globalDofIdx);
}
}
}
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
eclWriter_->evalSummaryState(isSubStep);
int episodeIdx = this->episodeIndex();
// Re-ordering in case of Alugrid
std::function<unsigned int(unsigned int)> gridToEquilGrid;
#if USE_ALUGRID
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
#endif // USE_ALUGRID
std::function<void(bool)> transUp =
[this,gridToEquilGrid](bool global) {
this->transmissibilities_.update(global,gridToEquilGrid);
};
{
OPM_TIMEBLOCK(applyActions);
actionHandler_.applyActions(episodeIdx,
simulator.time() + simulator.timeStepSize(),
transUp);
}
// deal with "clogging" for the MICP model
if constexpr (enableMICP){
auto& model = this->model();
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
auto& phi = this->referencePorosity_[/*timeIdx=*/1][globalDofIdx];
MICPModule::checkCloggingMICP(model, phi, globalDofIdx);
}
}
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
OPM_TIMEBLOCK(endEpisode);
auto& simulator = this->simulator();
auto& schedule = simulator.vanguard().schedule();
wellModel_.endEpisode();
if (enableAquifers_)
aquiferModel_.endEpisode();
int episodeIdx = this->episodeIndex();
// check if we're finished ...
if (episodeIdx + 1 >= static_cast<int>(schedule.size() - 1)) {
simulator.setFinished(true);
return;
}
// .. if we're not yet done, start the next episode (report step)
simulator.startNextEpisode(schedule.stepLength(episodeIdx + 1));
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(bool verbose = true)
{
OPM_TIMEBLOCK(problemWriteOutput);
// use the generic code to prepare the output fields and to
// write the desired VTK files.
ParentType::writeOutput(verbose);
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
if (enableEclOutput_){
eclWriter_->writeOutput(isSubStep);
}
}
void finalizeOutput() {
OPM_TIMEBLOCK(finalizeOutput);
// this will write all pending output to disk
// to avoid corruption of output files
eclWriter_.reset();
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return transmissibilities_.permeability(globalSpaceIdx);
}
/*!
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
const DimMatrix& intrinsicPermeability(unsigned globalElemIdx) const
{ return transmissibilities_.permeability(globalElemIdx); }
/*!
* \copydoc EclTransmissiblity::transmissibility
*/
template <class Context>
Scalar transmissibility(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return pffDofData_.get(context.element(), toDofLocalIdx).transmissibility;
}
/*!
* \brief Direct access to the transmissibility between two elements.
*/
Scalar transmissibility(unsigned globalCenterElemIdx, unsigned globalElemIdx) const
{
return transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
}
/*!
* \copydoc EclTransmissiblity::diffusivity
*/
template <class Context>
Scalar diffusivity(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return *pffDofData_.get(context.element(), toDofLocalIdx).diffusivity;
}
/*!
* \copydoc EclTransmissiblity::transmissibilityBoundary
*/
template <class Context>
Scalar transmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.transmissibilityBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Direct access to a boundary transmissibility.
*/
Scalar transmissibilityBoundary(const unsigned globalSpaceIdx,
const unsigned boundaryFaceIdx) const
{
return transmissibilities_.transmissibilityBoundary(globalSpaceIdx, boundaryFaceIdx);
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityIn(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransIn;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityOut(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransOut;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.thermalHalfTransBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Return a reference to the object that handles the "raw" transmissibilities.
*/
const typename Vanguard::TransmissibilityType& eclTransmissibilities() const
{ return transmissibilities_; }
/*!
* \copydoc BlackOilBaseProblem::thresholdPressure
*/
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const EclThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
EclThresholdPressure<TypeTag>& thresholdPressure()
{ return thresholdPressures_; }
const EclTracerModel<TypeTag>& tracerModel() const
{ return tracerModel_; }
EclTracerModel<TypeTag>& tracerModel()
{ return tracerModel_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* For the EclProblem, this method is identical to referencePorosity(). The intensive
* quantities object may apply various multipliers (e.g. ones which model rock
* compressibility and water induced rock compaction) to it which depend on the
* current physical conditions.
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->porosity(globalSpaceIdx, timeIdx);
}
/*!
* \brief Returns the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
template <class Context>
Scalar dofCenterDepth(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->dofCenterDepth(globalSpaceIdx);
}
/*!
* \brief Direct indexed acces to the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
Scalar dofCenterDepth(unsigned globalSpaceIdx) const
{
return this->simulator().vanguard().cellCenterDepth(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockCompressibility
*/
template <class Context>
Scalar rockCompressibility(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockCompressibility(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockReferencePressure
*/
template <class Context>
Scalar rockReferencePressure(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockReferencePressure(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->materialLawParams(globalSpaceIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx) const
{
return materialLawManager_->materialLawParams(globalDofIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx, FaceDir::DirEnum facedir) const
{
return materialLawManager_->materialLawParams(globalDofIdx, facedir);
}
/*!
* \brief Return the parameters for the energy storage law of the rock
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionLawParams(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->thermalConductionLawParams(globalSpaceIdx);
}
/*!
* \brief Returns the ECL material law manager
*
* Note that this method is *not* part of the generic eWoms problem API because it
* would force all problens use the ECL material laws.
*/
std::shared_ptr<const EclMaterialLawManager> materialLawManager() const
{ return materialLawManager_; }
template <class FluidState>
void updateRelperms(
std::array<Evaluation,numPhases> &mobility,
DirectionalMobilityPtr &dirMob,
FluidState &fluidState,
unsigned globalSpaceIdx) const
{
OPM_TIMEBLOCK_LOCAL(updateRelperms);
{
// calculate relative permeabilities. note that we store the result into the
// mobility_ class attribute. the division by the phase viscosity happens later.
const auto& materialParams = materialLawParams(globalSpaceIdx);
MaterialLaw::relativePermeabilities(mobility, materialParams, fluidState);
Valgrind::CheckDefined(mobility);
}
if (materialLawManager_->hasDirectionalRelperms()
|| materialLawManager_->hasDirectionalImbnum())
{
using Dir = FaceDir::DirEnum;
constexpr int ndim = 3;
dirMob = std::make_unique<DirectionalMobility<TypeTag, Evaluation>>();
Dir facedirs[ndim] = {Dir::XPlus, Dir::YPlus, Dir::ZPlus};
for (int i = 0; i<ndim; i++) {
const auto& materialParams = materialLawParams(globalSpaceIdx, facedirs[i]);
auto& mob_array = dirMob->getArray(i);
MaterialLaw::relativePermeabilities(mob_array, materialParams, fluidState);
}
}
}
/*!
* \copydoc materialLawManager()
*/
std::shared_ptr<EclMaterialLawManager> materialLawManager()
{ return materialLawManager_; }
using EclGenericProblem<GridView,FluidSystem,Scalar>::pvtRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned pvtRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return pvtRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::satnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned satnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->satnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::miscnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned miscnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->miscnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::plmixnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned plmixnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->plmixnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxPolymerAdsorption;
/*!
* \brief Returns the max polymer adsorption value
*/
template <class Context>
Scalar maxPolymerAdsorption(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->maxPolymerAdsorption(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().vanguard().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// use the initial temperature of the DOF if temperature is not a primary
// variable
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
}
/*!
* \copydoc FvBaseProblem::boundary
*
* ECLiPSE uses no-flow conditions for all boundaries. \todo really?
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
OPM_TIMEBLOCK_LOCAL(eclProblemBoundary);
if (!context.intersection(spaceIdx).boundary())
return;
if constexpr (!enableEnergy || !enableThermalFluxBoundaries)
values.setNoFlow();
else {
// in the energy case we need to specify a non-trivial boundary condition
// because the geothermal gradient needs to be maintained. for this, we
// simply assume the initial temperature at the boundary and specify the
// thermal flow accordingly. in this context, "thermal flow" means energy
// flow due to a temerature gradient while assuming no-flow for mass
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
values.setThermalFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
}
if (nonTrivialBoundaryConditions()) {
unsigned indexInInside = context.intersection(spaceIdx).indexInInside();
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
unsigned pvtRegionIdx = pvtRegionIndex(context, spaceIdx, timeIdx);
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(indexInInside);
const auto& dirichlet = dirichlet_(dir)[globalDofIdx];
if (freebc_(dir)[globalDofIdx])
values.setFreeFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
else if (thermalbc_(dir)[globalDofIdx])
values.setThermalFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
else if (std::get<0>(dirichlet) != BCComponent::NONE)
values.setFreeFlow(context, spaceIdx, timeIdx, boundaryFluidState(globalDofIdx, indexInInside));
else {
// TODO account for enthalpy flux.
values.setMassRate(massratebc_(dir)[globalDofIdx], pvtRegionIdx);
}
}
}
/*!
* \brief Returns an element's historic maximum oil phase saturation that was
* observed during the simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This is a bit of a hack from the conceptional point of view, but it is required to
* match the results of the 'flow' and ECLIPSE 100 simulators.
*/
Scalar maxOilSaturation(unsigned globalDofIdx) const
{
if (!this->vapparsActive(this->episodeIndex()))
return 0.0;
return this->maxOilSaturation_[globalDofIdx];
}
/*!
* \brief Sets an element's maximum oil phase saturation observed during the
* simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This a hack on top of the maxOilSaturation() hack but it is currently required to
* do restart externally. i.e. from the flow code.
*/
void setMaxOilSaturation(unsigned globalDofIdx, Scalar value)
{
if (!this->vapparsActive(this->episodeIndex()))
return;
this->maxOilSaturation_[globalDofIdx] = value;
}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*/
Scalar maxGasDissolutionFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
int episodeIdx = this->episodeIndex();
if (!this->drsdtActive_(episodeIdx) || this->maxDRs_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2.0;
Scalar scaling = 1.0;
if (this->drsdtConvective_(episodeIdx)) {
scaling = this->convectiveDrs_[globalDofIdx];
}
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
if (timeIdx == 0)
return this->lastRs_[globalDofIdx] + this->maxDRs_[pvtRegionIdx] * scaling;
else
return this->lastRs_[globalDofIdx];
}
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*/
Scalar maxOilVaporizationFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
int episodeIdx = this->episodeIndex();
if (!this->drvdtActive_(episodeIdx) || this->maxDRv_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2.0;
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
if (timeIdx == 0)
return this->lastRv_[globalDofIdx] + this->maxDRv_[pvtRegionIdx];
else
return this->lastRv_[globalDofIdx];
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* For quite technical reasons, the storage term cannot be recycled if either DRSDT
* or DRVDT are active in ebos. Nor if the porosity is changes between timesteps
* using a pore volume multiplier (i.e., poreVolumeMultiplier() != 1.0)
*/
bool recycleFirstIterationStorage() const
{
int episodeIdx = this->episodeIndex();
return !this->drsdtActive_(episodeIdx) &&
!this->drvdtActive_(episodeIdx) &&
this->rockCompPoroMultWc_.empty() &&
this->rockCompPoroMult_.empty();
}
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
values.assignNaive(initialFluidStates_[globalDofIdx]);
if constexpr (enableSolvent)
values[Indices::solventSaturationIdx] = this->solventSaturation_[globalDofIdx];
if constexpr (enablePolymer)
values[Indices::polymerConcentrationIdx] = this->polymerConcentration_[globalDofIdx];
if constexpr (enablePolymerMolarWeight)
values[Indices::polymerMoleWeightIdx]= this->polymerMoleWeight_[globalDofIdx];
if constexpr (enableBrine) {
if (enableSaltPrecipitation && values.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltSaturation();
}
else {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltConcentration();
}
}
if constexpr (enableMICP){
values[Indices::microbialConcentrationIdx]= this->microbialConcentration_[globalDofIdx];
values[Indices::oxygenConcentrationIdx]= this->oxygenConcentration_[globalDofIdx];
values[Indices::ureaConcentrationIdx]= this->ureaConcentration_[globalDofIdx];
values[Indices::calciteConcentrationIdx]= this->calciteConcentration_[globalDofIdx];
values[Indices::biofilmConcentrationIdx]= this->biofilmConcentration_[globalDofIdx];
}
values.checkDefined();
}
/*!
* \copydoc FvBaseProblem::initialSolutionApplied()
*/
void initialSolutionApplied()
{
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx*/0);
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities and the after applying the initial solution because
// the well model uses these...
wellModel_.init();
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
// the initial solution.
thresholdPressures_.finishInit();
updateCompositionChangeLimits_();
if (enableAquifers_)
aquiferModel_.initialSolutionApplied();
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
source(rate, globalDofIdx, timeIdx);
}
void source(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const
{
OPM_TIMEBLOCK_LOCAL(eclProblemSource);
rate = 0.0;
// Add well contribution to source here.
wellModel_.computeTotalRatesForDof(rate, globalDofIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
rate[eqIdx] /= this->model().dofTotalVolume(globalDofIdx);
Valgrind::CheckDefined(rate[eqIdx]);
assert(isfinite(rate[eqIdx]));
}
// Add non-well sources.
addToSourceDense(rate, globalDofIdx, timeIdx);
}
void addToSourceDense(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const
{
if (enableAquifers_)
aquiferModel_.addToSource(rate, globalDofIdx, timeIdx);
// if requested, compensate systematic mass loss for cells which were "well
// behaved" in the last time step
// Note that we don't allow for drift compensation if there are no active wells.
const bool compensateDrift = wellModel_.wellsActive();
if (enableDriftCompensation_ && compensateDrift) {
const auto& simulator = this->simulator();
const auto& model = this->model();
// we use a lower tolerance for the compensation too
// assure the added drift from the last step does not
// cause convergence issues on the current step
Scalar maxCompensation = model.newtonMethod().tolerance()/10;
Scalar poro = this->porosity(globalDofIdx, timeIdx);
Scalar dt = simulator.timeStepSize();
EqVector dofDriftRate = drift_[globalDofIdx];
dofDriftRate /= dt*model.dofTotalVolume(globalDofIdx);
// restrict drift compensation to the CNV tolerance
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
Scalar cnv = std::abs(dofDriftRate[eqIdx])*dt*model.eqWeight(globalDofIdx, eqIdx)/poro;
if (cnv > maxCompensation) {
dofDriftRate[eqIdx] *= maxCompensation/cnv;
}
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] -= dofDriftRate[eqIdx];
}
}
/*!
* \brief Returns a reference to the ECL well manager used by the problem.
*
* This can be used for inspecting wells outside of the problem.
*/
const EclWellModel& wellModel() const
{ return wellModel_; }
EclWellModel& wellModel()
{ return wellModel_; }
const EclAquiferModel& aquiferModel() const
{ return aquiferModel_; }
EclAquiferModel& mutableAquiferModel()
{ return aquiferModel_; }
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
{ return initialFluidStates_[globalDofIdx]; }
const EclipseIO& eclIO() const
{ return eclWriter_->eclIO(); }
void setSubStepReport(const SimulatorReportSingle& report)
{ return eclWriter_->setSubStepReport(report); }
void setSimulationReport(const SimulatorReport& report)
{ return eclWriter_->setSimulationReport(report); }
bool nonTrivialBoundaryConditions() const
{ return nonTrivialBoundaryConditions_; }
const InitialFluidState boundaryFluidState(unsigned globalDofIdx, const int directionId) const
{
OPM_TIMEBLOCK_LOCAL(boundaryFluidState);
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
const auto& dirichlet = dirichlet_(dir)[globalDofIdx];
if(std::get<0>(dirichlet) == BCComponent::NONE)
return initialFluidStates_[globalDofIdx];
InitialFluidState fluidState;
const int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
fluidState.setPvtRegionIndex(pvtRegionIdx);
double pressure = initialFluidStates_[globalDofIdx].pressure(oilPhaseIdx);
const auto pressure_input = std::get<1>(dirichlet);
if(pressure_input)
pressure = *pressure_input;
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(globalDofIdx);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
fluidState.setPressure(phaseIdx, pressure);
}
switch (std::get<0>(dirichlet)) {
case BCComponent::OIL:
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
throw std::logic_error("oil is not active and you're trying to add oil BC");
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
break;
case BCComponent::GAS:
if (!FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
throw std::logic_error("gas is not active and you're trying to add gas BC");
fluidState.setSaturation(FluidSystem::gasPhaseIdx, 1.0);
break;
case BCComponent::WATER:
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
throw std::logic_error("water is not active and you're trying to add water BC");
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 1.0);
break;
case BCComponent::SOLVENT:
case BCComponent::POLYMER:
case BCComponent::NONE:
throw std::logic_error("you need to specify a valid component (OIL, WATER or GAS) when DIRICHLET type is set in BC");
break;
}
double temperature = initialFluidStates_[globalDofIdx].temperature(oilPhaseIdx);
const auto temperature_input = std::get<2>(dirichlet);
if(temperature_input)
temperature = *temperature_input;
fluidState.setTemperature(temperature);
fluidState.setRs(0.0);
fluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
fluidState.setRvw(0.0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setDensity(phaseIdx, rho);
}
return fluidState;
}
/*!
* \brief Propose the size of the next time step to the simulator.
*
* This method is only called if the Newton solver does converge, the simulator
* automatically cuts the time step in half without consultating this method again.
*/
Scalar nextTimeStepSize() const
{
OPM_TIMEBLOCK(nexTimeStepSize);
// allow external code to do the timestepping
if (this->nextTimeStepSize_ > 0.0)
return this->nextTimeStepSize_;
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// for the initial episode, we use a fixed time step size
if (episodeIdx < 0)
return this->initialTimeStepSize_;
// ask the newton method for a suggestion. This suggestion will be based on how
// well the previous time step converged. After that, apply the runtime time
// stepping constraints.
const auto& newtonMethod = this->model().newtonMethod();
return limitNextTimeStepSize_(newtonMethod.suggestTimeStepSize(simulator.timeStepSize()));
}
/*!
* \brief Calculate the porosity multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompPoroMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
OPM_TIMEBLOCK_LOCAL(rockCompPoroMultiplier);
if (this->rockCompPoroMult_.empty() && this->rockCompPoroMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectiveOilPressure = decay<LhsEval>(fs.pressure(oilPhaseIdx));
if (!this->minOilPressure_.empty())
// The pore space change is irreversible
effectiveOilPressure =
min(decay<LhsEval>(fs.pressure(oilPhaseIdx)),
this->minOilPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectiveOilPressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompPoroMult_.empty()) {
return this->rockCompPoroMult_[tableIdx].eval(effectiveOilPressure, /*extrapolation=*/true);
}
// water compaction
assert(!this->rockCompPoroMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompPoroMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
}
/*!
* \brief Calculate the transmissibility multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompTransMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
OPM_TIMEBLOCK_LOCAL(rockCompTransMultiplier);
if (this->rockCompTransMult_.empty() && this->rockCompTransMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectiveOilPressure = decay<LhsEval>(fs.pressure(oilPhaseIdx));
if (!this->minOilPressure_.empty())
// The pore space change is irreversible
effectiveOilPressure =
min(decay<LhsEval>(fs.pressure(oilPhaseIdx)),
this->minOilPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectiveOilPressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompTransMult_.empty())
return this->rockCompTransMult_[tableIdx].eval(effectiveOilPressure, /*extrapolation=*/true);
// water compaction
assert(!this->rockCompTransMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompTransMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
}
std::pair<bool, RateVector> boundaryCondition(const unsigned int globalSpaceIdx, const int directionId)
{
OPM_TIMEBLOCK_LOCAL(boundaryCondition);
if (!nonTrivialBoundaryConditions_) {
return { false, RateVector(0.0) };
}
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
const auto& dirichlet = dirichlet_(dir)[globalSpaceIdx];
bool free = freebc_(dir)[globalSpaceIdx] || std::get<0>(dirichlet) != BCComponent::NONE;
return { free, massratebc_(dir)[globalSpaceIdx] };
}
const std::unique_ptr<EclWriterType>& eclWriter() const
{
return eclWriter_;
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(static_cast<BaseType&>(*this));
serializer(drift_);
serializer(wellModel_);
serializer(aquiferModel_);
serializer(tracerModel_);
serializer(*materialLawManager_);
serializer(*eclWriter_);
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
protected:
void updateExplicitQuantities_()
{
OPM_TIMEBLOCK(updateExplicitQuantities);
const bool invalidateFromMaxWaterSat = updateMaxWaterSaturation_();
const bool invalidateFromMinPressure = updateMinPressure_();
// update hysteresis and max oil saturation used in vappars
const bool invalidateFromHyst = updateHysteresis_();
const bool invalidateFromMaxOilSat = updateMaxOilSaturation_();
// the derivatives may have change
bool invalidateIntensiveQuantities
= invalidateFromMaxWaterSat || invalidateFromMinPressure || invalidateFromHyst || invalidateFromMaxOilSat;
if (invalidateIntensiveQuantities) {
OPM_TIMEBLOCK(beginTimeStepInvalidateIntensiveQuantities);
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
}
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>())
updateMaxPolymerAdsorption_();
}
template<class UpdateFunc>
void updateProperty_(const std::string& failureMsg,
UpdateFunc func)
{
OPM_TIMEBLOCK(updateProperty);
const auto& model = this->simulator().model();
const auto& primaryVars = model.solution(/*timeIdx*/0);
const auto& vanguard = this->simulator().vanguard();
size_t numGridDof = primaryVars.size();
OPM_BEGIN_PARALLEL_TRY_CATCH();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++dofIdx) {
const auto& iq = *model.cachedIntensiveQuantities(dofIdx, /*timeIdx=*/ 0);
func(dofIdx, iq);
}
OPM_END_PARALLEL_TRY_CATCH(failureMsg, vanguard.grid().comm());
}
// update the parameters needed for DRSDT and DRVDT
void updateCompositionChangeLimits_()
{
OPM_TIMEBLOCK(updateCompositionChangeLimits);
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
int episodeIdx = this->episodeIndex();
std::array<bool,3> active{this->drsdtConvective_(episodeIdx),
this->drsdtActive_(episodeIdx),
this->drvdtActive_(episodeIdx)};
if (!active[0] && !active[1] && !active[2])
return;
this->updateProperty_("EclProblem::updateCompositionChangeLimits_()) failed:",
[this,episodeIdx,active](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateCompositionChangeLimits_(compressedDofIdx,
iq,
episodeIdx,
active);
}
);
}
void updateCompositionChangeLimits_(unsigned compressedDofIdx, const IntensiveQuantities& iq,int episodeIdx, const std::array<bool,3>& active)
{
auto& simulator = this->simulator();
auto& vanguard = simulator.vanguard();
if (active[0]) {
// This implements the convective DRSDT as described in
// Sandve et al. "Convective dissolution in field scale CO2 storage simulations using the OPM Flow
// simulator" Submitted to TCCS 11, 2021
const Scalar g = this->gravity_[dim - 1];
const DimMatrix& perm = intrinsicPermeability(compressedDofIdx);
const Scalar permz = perm[dim - 1][dim - 1]; // The Z permeability
const Scalar distZ = vanguard.cellThickness(compressedDofIdx);
const auto& fs = iq.fluidState();
const Scalar t = getValue(fs.temperature(FluidSystem::oilPhaseIdx));
const Scalar p = getValue(fs.pressure(FluidSystem::oilPhaseIdx));
const Scalar so = getValue(fs.saturation(FluidSystem::oilPhaseIdx));
const Scalar rssat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), t, p);
const Scalar saturatedInvB
= FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), t, p);
const Scalar rsZero = 0.0;
const Scalar pureDensity
= FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), t, p, rsZero)
* FluidSystem::oilPvt().oilReferenceDensity(fs.pvtRegionIndex());
const Scalar saturatedDensity = saturatedInvB
* (FluidSystem::oilPvt().oilReferenceDensity(fs.pvtRegionIndex())
+ rssat * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, fs.pvtRegionIndex()));
const Scalar deltaDensity = saturatedDensity - pureDensity;
const Scalar rs = getValue(fs.Rs());
const Scalar visc = FluidSystem::oilPvt().viscosity(fs.pvtRegionIndex(), t, p, rs);
const Scalar poro = getValue(iq.porosity());
// Note that for so = 0 this gives no limits (inf) for the dissolution rate
// Also we restrict the effect of convective mixing to positive density differences
// i.e. we only allow for fingers moving downward
this->convectiveDrs_[compressedDofIdx]
= permz * rssat * max(0.0, deltaDensity) * g / (so * visc * distZ * poro);
}
if (active[1]) {
const auto& fs = iq.fluidState();
using FluidState = typename std::decay<decltype(fs)>::type;
int pvtRegionIdx = this->pvtRegionIndex(compressedDofIdx);
const auto& oilVaporizationControl = vanguard.schedule()[episodeIdx].oilvap();
if (oilVaporizationControl.getOption(pvtRegionIdx) || fs.saturation(gasPhaseIdx) > freeGasMinSaturation_)
this->lastRs_[compressedDofIdx]
= BlackOil::template getRs_<FluidSystem, FluidState, Scalar>(fs, iq.pvtRegionIndex());
else
this->lastRs_[compressedDofIdx] = std::numeric_limits<Scalar>::infinity();
}
if (active[2]) {
const auto& fs = iq.fluidState();
using FluidState = typename std::decay<decltype(fs)>::type;
this->lastRv_[compressedDofIdx]
= BlackOil::template getRv_<FluidSystem, FluidState, Scalar>(fs, iq.pvtRegionIndex());
}
}
bool updateMaxOilSaturation_()
{
OPM_TIMEBLOCK(updateMaxOilSaturation);
int episodeIdx = this->episodeIndex();
// we use VAPPARS
if (this->vapparsActive(episodeIdx)) {
this->updateProperty_("EclProblem::updateMaxOilSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxOilSaturation_(compressedDofIdx,iq);
});
return true;
}
return false;
}
bool updateMaxOilSaturation_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
OPM_TIMEBLOCK_LOCAL(updateMaxOilSaturation);
const auto& fs = iq.fluidState();
const Scalar So = decay<Scalar>(fs.saturation(oilPhaseIdx));
auto& mos = this->maxOilSaturation_;
if(mos[compressedDofIdx] < So){
mos[compressedDofIdx] = So;
return true;
}else{
return false;
}
}
bool updateMaxWaterSaturation_()
{
OPM_TIMEBLOCK(updateMaxWaterSaturation);
// water compaction is activated in ROCKCOMP
if (this->maxWaterSaturation_.empty())
return false;
this->maxWaterSaturation_[/*timeIdx=*/1] = this->maxWaterSaturation_[/*timeIdx=*/0];
this->updateProperty_("EclProblem::updateMaxWaterSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxWaterSaturation_(compressedDofIdx,iq);
});
return true;
}
bool updateMaxWaterSaturation_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
OPM_TIMEBLOCK_LOCAL(updateMaxWaterSaturation);
const auto& fs = iq.fluidState();
const Scalar Sw = decay<Scalar>(fs.saturation(waterPhaseIdx));
auto& mow = this->maxWaterSaturation_;
if(mow[compressedDofIdx]< Sw){
mow[compressedDofIdx] = Sw;
return true;
}else{
return false;
}
}
bool updateMinPressure_()
{
OPM_TIMEBLOCK(updateMinPressure);
// IRREVERS option is used in ROCKCOMP
if (this->minOilPressure_.empty())
return false;
this->updateProperty_("EclProblem::updateMinPressure_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMinPressure_(compressedDofIdx,iq);
});
return true;
}
bool updateMinPressure_(unsigned compressedDofIdx, const IntensiveQuantities& iq){
OPM_TIMEBLOCK_LOCAL(updateMinPressure);
const auto& fs = iq.fluidState();
const Scalar mo = getValue(fs.pressure(oilPhaseIdx));
auto& mos = this->minOilPressure_;
if(mos[compressedDofIdx]> mo){
mos[compressedDofIdx] = mo;
return true;
}else{
return false;
}
}
void readMaterialParameters_()
{
OPM_TIMEBLOCK(readMaterialParameters);
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// the PVT and saturation region numbers
this->updatePvtnum_();
this->updateSatnum_();
// the MISC region numbers (solvent model)
this->updateMiscnum_();
// the PLMIX region numbers (polymer model)
this->updatePlmixnum_();
// directional relative permeabilities
this->updateKrnum_();
////////////////////////////////
// porosity
updateReferencePorosity_();
this->referencePorosity_[1] = this->referencePorosity_[0];
////////////////////////////////
////////////////////////////////
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
materialLawManager_ = std::make_shared<EclMaterialLawManager>();
materialLawManager_->initFromState(eclState);
materialLawManager_->initParamsForElements(eclState, this->model().numGridDof());
////////////////////////////////
}
void readThermalParameters_()
{
if constexpr (enableEnergy)
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
thermalLawManager_ = std::make_shared<EclThermalLawManager>();
thermalLawManager_->initParamsForElements(eclState, this->model().numGridDof());
}
}
void updateReferencePorosity_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
size_t numDof = this->model().numGridDof();
this->referencePorosity_[/*timeIdx=*/0].resize(numDof);
const auto& fp = eclState.fieldProps();
const std::vector<double> porvData = fp.porv(false);
const std::vector<int> actnumData = fp.actnum();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
Scalar poreVolume = porvData[dofIdx];
// we define the porosity as the accumulated pore volume divided by the
// geometric volume of the element. Note that -- in pathetic cases -- it can
// be larger than 1.0!
Scalar dofVolume = simulator.model().dofTotalVolume(dofIdx);
assert(dofVolume > 0.0);
this->referencePorosity_[/*timeIdx=*/0][dofIdx] = poreVolume/dofVolume;
}
}
void readInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
if (eclState.getInitConfig().hasEquil())
readEquilInitialCondition_();
else
readExplicitInitialCondition_();
if constexpr (enableSolvent || enablePolymer || enablePolymerMolarWeight || enableMICP)
this->readBlackoilExtentionsInitialConditions_(this->model().numGridDof(),
enableSolvent,
enablePolymer,
enablePolymerMolarWeight,
enableMICP);
//initialize min/max values
size_t numElems = this->model().numGridDof();
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
const auto& fs = initialFluidStates_[elemIdx];
if (!this->maxWaterSaturation_.empty())
this->maxWaterSaturation_[elemIdx] = std::max(this->maxWaterSaturation_[elemIdx], fs.saturation(waterPhaseIdx));
if (!this->maxOilSaturation_.empty())
this->maxOilSaturation_[elemIdx] = std::max(this->maxOilSaturation_[elemIdx], fs.saturation(oilPhaseIdx));
if (!this->minOilPressure_.empty())
this->minOilPressure_[elemIdx] = std::min(this->minOilPressure_[elemIdx], fs.pressure(oilPhaseIdx));
}
}
void readEquilInitialCondition_()
{
const auto& simulator = this->simulator();
// initial condition corresponds to hydrostatic conditions.
using EquilInitializer = EclEquilInitializer<TypeTag>;
EquilInitializer equilInitializer(simulator, *materialLawManager_);
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
}
}
void readEclRestartSolution_()
{
// Set the start time of the simulation
auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
{
int restart_step = initconfig.getRestartStep();
simulator.setTime(schedule.seconds(restart_step));
simulator.startNextEpisode(simulator.startTime() + simulator.time(),
schedule.stepLength(restart_step));
simulator.setEpisodeIndex(restart_step);
}
eclWriter_->beginRestart();
Scalar dt = std::min(eclWriter_->restartTimeStepSize(), simulator.episodeLength());
simulator.setTimeStepSize(dt);
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
if constexpr (enableSolvent)
this->solventSaturation_.resize(numElems, 0.0);
if constexpr (enablePolymer)
this->polymerConcentration_.resize(numElems, 0.0);
if constexpr (enablePolymerMolarWeight) {
const std::string msg {"Support of the RESTART for polymer molecular weight "
"is not implemented yet. The polymer weight value will be "
"zero when RESTART begins"};
OpmLog::warning("NO_POLYMW_RESTART", msg);
this->polymerMoleWeight_.resize(numElems, 0.0);
}
if constexpr (enableMICP){
this->microbialConcentration_.resize(numElems, 0.0);
this->oxygenConcentration_.resize(numElems, 0.0);
this->ureaConcentration_.resize(numElems, 0.0);
this->biofilmConcentration_.resize(numElems, 0.0);
this->calciteConcentration_.resize(numElems, 0.0);
}
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
eclWriter_->eclOutputModule().initHysteresisParams(simulator, elemIdx);
eclWriter_->eclOutputModule().assignToFluidState(elemFluidState, elemIdx);
// Note: Function processRestartSaturations_() mutates the
// 'ssol' argument--the value from the restart file--if solvent
// is enabled. Then, store the updated solvent saturation into
// 'solventSaturation_'. Otherwise, just pass a dummy value to
// the function and discard the unchanged result. Do not index
// into 'solventSaturation_' unless solvent is enabled.
{
auto ssol = enableSolvent
? eclWriter_->eclOutputModule().getSolventSaturation(elemIdx)
: Scalar(0);
processRestartSaturations_(elemFluidState, ssol);
if constexpr (enableSolvent)
this->solventSaturation_[elemIdx] = ssol;
}
if (! this->lastRs_.empty()) {
this->lastRs_[elemIdx] = elemFluidState.Rs();
}
if (! this->lastRv_.empty()) {
this->lastRv_[elemIdx] = elemFluidState.Rv();
}
if constexpr (enablePolymer)
this->polymerConcentration_[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx);
if constexpr (enableMICP){
this->microbialConcentration_[elemIdx] = eclWriter_->eclOutputModule().getMicrobialConcentration(elemIdx);
this->oxygenConcentration_[elemIdx] = eclWriter_->eclOutputModule().getOxygenConcentration(elemIdx);
this->ureaConcentration_[elemIdx] = eclWriter_->eclOutputModule().getUreaConcentration(elemIdx);
this->biofilmConcentration_[elemIdx] = eclWriter_->eclOutputModule().getBiofilmConcentration(elemIdx);
this->calciteConcentration_[elemIdx] = eclWriter_->eclOutputModule().getCalciteConcentration(elemIdx);
}
// if we need to restart for polymer molecular weight simulation, we need to add related here
}
const int episodeIdx = this->episodeIndex();
const auto& oilVaporizationControl = simulator.vanguard().schedule()[episodeIdx].oilvap();
if (this->drsdtActive_(episodeIdx))
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < this->maxDRs_.size(); ++pvtRegionIdx)
this->maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*simulator.timeStepSize();
if (this->drvdtActive_(episodeIdx))
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < this->maxDRv_.size(); ++pvtRegionIdx)
this->maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*simulator.timeStepSize();
// assign the restart solution to the current solution. note that we still need
// to compute real initial solution after this because the initial fluid states
// need to be correct for stuff like boundary conditions.
auto& sol = this->model().solution(/*timeIdx=*/0);
const auto& gridView = this->gridView();
ElementContext elemCtx(simulator);
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
initial(sol[elemIdx], elemCtx, /*spaceIdx=*/0, /*timeIdx=*/0);
}
// make sure that the ghost and overlap entities exhibit the correct
// solution. alternatively, this could be done in the loop above by also
// considering non-interior elements. Since the initial() method might not work
// 100% correctly for such elements, let's play safe and explicitly synchronize
// using message passing.
this->model().syncOverlap();
eclWriter_->endRestart();
}
void processRestartSaturations_(InitialFluidState& elemFluidState, Scalar& solventSaturation)
{
// each phase needs to be above certain value to be claimed to be existing
// this is used to recover some RESTART running with the defaulted single-precision format
const Scalar smallSaturationTolerance = 1.e-6;
Scalar sumSaturation = 0.0;
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (elemFluidState.saturation(phaseIdx) < smallSaturationTolerance)
elemFluidState.setSaturation(phaseIdx, 0.0);
sumSaturation += elemFluidState.saturation(phaseIdx);
}
}
if constexpr (enableSolvent) {
if (solventSaturation < smallSaturationTolerance)
solventSaturation = 0.0;
sumSaturation += solventSaturation;
}
assert(sumSaturation > 0.0);
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
const Scalar saturation = elemFluidState.saturation(phaseIdx) / sumSaturation;
elemFluidState.setSaturation(phaseIdx, saturation);
}
}
if constexpr (enableSolvent) {
solventSaturation = solventSaturation / sumSaturation;
}
}
void readExplicitInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
const auto& fp = eclState.fieldProps();
bool has_swat = fp.has_double("SWAT");
bool has_sgas = fp.has_double("SGAS");
bool has_rs = fp.has_double("RS");
bool has_rv = fp.has_double("RV");
bool has_rvw = fp.has_double("RVW");
bool has_pressure = fp.has_double("PRESSURE");
bool has_salt = fp.has_double("SALT");
bool has_saltp = fp.has_double("SALTP");
// make sure all required quantities are enables
if (Indices::numPhases > 1) {
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !has_swat)
throw std::runtime_error("The ECL input file requires the presence of the SWAT keyword if "
"the water phase is active");
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !has_sgas && FluidSystem::phaseIsActive(oilPhaseIdx))
throw std::runtime_error("The ECL input file requires the presence of the SGAS keyword if "
"the gas phase is active");
}
if (!has_pressure)
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
"keyword if the model is initialized explicitly");
if (FluidSystem::enableDissolvedGas() && !has_rs)
throw std::runtime_error("The ECL input file requires the RS keyword to be present if"
" dissolved gas is enabled");
if (FluidSystem::enableVaporizedOil() && !has_rv)
throw std::runtime_error("The ECL input file requires the RV keyword to be present if"
" vaporized oil is enabled");
if (FluidSystem::enableVaporizedWater() && !has_rvw)
throw std::runtime_error("The ECL input file requires the RVW keyword to be present if"
" vaporized water is enabled");
if (enableBrine && !has_salt)
throw std::runtime_error("The ECL input file requires the SALT keyword to be present if"
" brine is enabled and the model is initialized explicitly");
if (enableSaltPrecipitation && !has_saltp)
throw std::runtime_error("The ECL input file requires the SALTP keyword to be present if"
" salt precipitation is enabled and the model is initialized explicitly");
size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
std::vector<double> waterSaturationData;
std::vector<double> gasSaturationData;
std::vector<double> pressureData;
std::vector<double> rsData;
std::vector<double> rvData;
std::vector<double> rvwData;
std::vector<double> tempiData;
std::vector<double> saltData;
std::vector<double> saltpData;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && Indices::numPhases > 1)
waterSaturationData = fp.get_double("SWAT");
else
waterSaturationData.resize(numDof);
if (FluidSystem::phaseIsActive(gasPhaseIdx) && FluidSystem::phaseIsActive(oilPhaseIdx))
gasSaturationData = fp.get_double("SGAS");
else
gasSaturationData.resize(numDof);
pressureData = fp.get_double("PRESSURE");
if (FluidSystem::enableDissolvedGas())
rsData = fp.get_double("RS");
if (FluidSystem::enableVaporizedOil())
rvData = fp.get_double("RV");
if (FluidSystem::enableVaporizedWater())
rvwData = fp.get_double("RVW");
// initial reservoir temperature
tempiData = fp.get_double("TEMPI");
// initial salt concentration data
if constexpr (enableBrine)
saltData = fp.get_double("SALT");
// initial precipitated salt saturation data
if constexpr (enableSaltPrecipitation)
saltpData = fp.get_double("SALTP");
// calculate the initial fluid states
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto& dofFluidState = initialFluidStates_[dofIdx];
dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
//////
// set temperature
//////
Scalar temperatureLoc = tempiData[dofIdx];
if (!std::isfinite(temperatureLoc) || temperatureLoc <= 0)
temperatureLoc = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperatureLoc);
//////
// set salt concentration
//////
if constexpr (enableBrine)
dofFluidState.setSaltConcentration(saltData[dofIdx]);
//////
// set precipitated salt saturation
//////
if constexpr (enableSaltPrecipitation)
dofFluidState.setSaltSaturation(saltpData[dofIdx]);
//////
// set saturations
//////
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[dofIdx]);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
1.0
- waterSaturationData[dofIdx]);
}
else
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[dofIdx]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1.0
- waterSaturationData[dofIdx]
- gasSaturationData[dofIdx]);
//////
// set phase pressures
//////
Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
dofFluidState.setPressure(phaseIdx, pressure);
}
if (FluidSystem::enableDissolvedGas())
dofFluidState.setRs(rsData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRs(0.0);
if (FluidSystem::enableVaporizedOil())
dofFluidState.setRv(rvData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
dofFluidState.setRvw(rvwData[dofIdx]);
//////
// set invB_
//////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setDensity(phaseIdx, rho);
}
}
}
// update the hysteresis parameters of the material laws for the whole grid
bool updateHysteresis_()
{
if (!materialLawManager_->enableHysteresis())
return false;
// we need to update the hysteresis data for _all_ elements (i.e., not just the
// interior ones) to avoid desynchronization of the processes in the parallel case!
this->updateProperty_("EclProblem::updateHysteresis_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
materialLawManager_->updateHysteresis(iq.fluidState(), compressedDofIdx);
});
return true;
}
bool updateHysteresis_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
OPM_TIMEBLOCK_LOCAL(updateHysteresis_);
materialLawManager_->updateHysteresis(iq.fluidState(), compressedDofIdx);
//TODO change materials to give a bool
return true;
}
void updateMaxPolymerAdsorption_()
{
// we need to update the max polymer adsoption data for all elements
this->updateProperty_("EclProblem::updateMaxPolymerAdsorption_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxPolymerAdsorption_(compressedDofIdx,iq);
});
}
bool updateMaxPolymerAdsorption_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const Scalar pa = scalarValue(iq.polymerAdsorption());
auto& mpa = this->maxPolymerAdsorption_;
if(mpa[compressedDofIdx]<pa){
mpa[compressedDofIdx] = pa;
return true;
}else{
return false;
}
}
private:
struct PffDofData_
{
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransIn;
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransOut;
ConditionalStorage<enableDiffusion, Scalar> diffusivity;
Scalar transmissibility;
};
// update the prefetch friendly data object
void updatePffDofData_()
{
const auto& distFn =
[this](PffDofData_& dofData,
const Stencil& stencil,
unsigned localDofIdx)
-> void
{
const auto& elementMapper = this->model().elementMapper();
unsigned globalElemIdx = elementMapper.index(stencil.entity(localDofIdx));
if (localDofIdx != 0) {
unsigned globalCenterElemIdx = elementMapper.index(stencil.entity(/*dofIdx=*/0));
dofData.transmissibility = transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
if constexpr (enableEnergy) {
*dofData.thermalHalfTransIn = transmissibilities_.thermalHalfTrans(globalCenterElemIdx, globalElemIdx);
*dofData.thermalHalfTransOut = transmissibilities_.thermalHalfTrans(globalElemIdx, globalCenterElemIdx);
}
if constexpr (enableDiffusion)
*dofData.diffusivity = transmissibilities_.diffusivity(globalCenterElemIdx, globalElemIdx);
}
};
pffDofData_.update(distFn);
}
void readBoundaryConditions_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& bcconfig = vanguard.eclState().getSimulationConfig().bcconfig();
if (bcconfig.size() > 0) {
nonTrivialBoundaryConditions_ = true;
size_t numCartDof = vanguard.cartesianSize();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
std::vector<int> cartesianToCompressedElemIdx(numCartDof, -1);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx)
cartesianToCompressedElemIdx[vanguard.cartesianIndex(elemIdx)] = elemIdx;
massratebc_.resize(numElems, 0.0);
freebc_.resize(numElems, false);
thermalbc_.resize(numElems, false);
dirichlet_.resize(numElems, {BCComponent::NONE, 0.0,0.0});
auto loopAndApply = [&cartesianToCompressedElemIdx,
&vanguard](const auto& bcface,
auto apply)
{
for (int i = bcface.i1; i <= bcface.i2; ++i) {
for (int j = bcface.j1; j <= bcface.j2; ++j) {
for (int k = bcface.k1; k <= bcface.k2; ++k) {
std::array<int, 3> tmp = {i,j,k};
auto elemIdx = cartesianToCompressedElemIdx[vanguard.cartesianIndex(tmp)];
if (elemIdx >= 0)
apply(elemIdx);
}
}
}
};
for (const auto& bcface : bcconfig) {
const auto& type = bcface.bctype;
if (type == BCType::RATE) {
int compIdx = 0; // default initialize to avoid -Wmaybe-uninitialized warning
switch (bcface.component) {
case BCComponent::OIL:
compIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
break;
case BCComponent::GAS:
compIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
break;
case BCComponent::WATER:
compIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
break;
case BCComponent::SOLVENT:
if constexpr (!enableSolvent)
throw std::logic_error("solvent is disabled and you're trying to add solvent to BC");
compIdx = Indices::solventSaturationIdx;
break;
case BCComponent::POLYMER:
if constexpr (!enablePolymer)
throw std::logic_error("polymer is disabled and you're trying to add polymer to BC");
compIdx = Indices::polymerConcentrationIdx;
break;
case BCComponent::NONE:
throw std::logic_error("you need to specify the component when RATE type is set in BC");
break;
}
std::vector<RateVector>& data = massratebc_(bcface.dir);
const Evaluation rate = bcface.rate;
loopAndApply(bcface,
[&data,compIdx,rate](int elemIdx)
{ data[elemIdx][compIdx] = rate; });
} else if (type == BCType::FREE) {
std::vector<bool>& data = freebc_(bcface.dir);
loopAndApply(bcface,
[&data](int elemIdx) { data[elemIdx] = true; });
// TODO: either the real initial solution needs to be computed or read from the restart file
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
if (initconfig.restartRequested()) {
throw std::logic_error("restart is not compatible with using free boundary conditions");
}
} else if (type == BCType::THERMAL) {
std::vector<bool>& data = thermalbc_(bcface.dir);
loopAndApply(bcface,
[&data](int elemIdx) { data[elemIdx] = true; });
// TODO: either the real initial solution needs to be computed or read from the restart file
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
if (initconfig.restartRequested()) {
throw std::logic_error("restart is not compatible with using free boundary conditions");
}
}
else if (type == BCType::DIRICHLET) {
const auto component = bcface.component;
const auto pressure = bcface.pressure;
const auto temperature = bcface.temperature;
std::vector<std::tuple<BCComponent, std::optional<double>, std::optional<double>>>& data = dirichlet_(bcface.dir);
loopAndApply(bcface,
[&data,component,pressure,temperature](int elemIdx) { data[elemIdx] = {component, pressure, temperature}; });
} else {
throw std::logic_error("invalid type for BC. Use FREE or RATE");
}
}
}
}
// this method applies the runtime constraints specified via the deck and/or command
// line parameters for the size of the next time step.
Scalar limitNextTimeStepSize_(Scalar dtNext) const
{
if constexpr (enableExperiments) {
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// first thing in the morning, limit the time step size to the maximum size
dtNext = std::min(dtNext, this->maxTimeStepSize_);
Scalar remainingEpisodeTime =
simulator.episodeStartTime() + simulator.episodeLength()
- (simulator.startTime() + simulator.time());
assert(remainingEpisodeTime >= 0.0);
// if we would have a small amount of time left over in the current episode, make
// two equal time steps instead of a big and a small one
if (remainingEpisodeTime/2.0 < dtNext && dtNext < remainingEpisodeTime*(1.0 - 1e-5))
// note: limiting to the maximum time step size here is probably not strictly
// necessary, but it should not hurt and is more fool-proof
dtNext = std::min(this->maxTimeStepSize_, remainingEpisodeTime/2.0);
if (simulator.episodeStarts()) {
// if a well event occurred, respect the limit for the maximum time step after
// that, too
int reportStepIdx = std::max(episodeIdx, 0);
const auto& events = simulator.vanguard().schedule()[reportStepIdx].events();
bool wellEventOccured =
events.hasEvent(ScheduleEvents::NEW_WELL)
|| events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE)
|| events.hasEvent(ScheduleEvents::INJECTION_UPDATE)
|| events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
if (episodeIdx >= 0 && wellEventOccured && this->maxTimeStepAfterWellEvent_ > 0)
dtNext = std::min(dtNext, this->maxTimeStepAfterWellEvent_);
}
}
return dtNext;
}
void computeAndSetEqWeights_()
{
std::vector<Scalar> sumInvB(numPhases, 0.0);
const auto& gridView = this->gridView();
ElementContext elemCtx(this->simulator());
for(const auto& elem: elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& dofFluidState = initialFluidStates_[elemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
sumInvB[phaseIdx] += dofFluidState.invB(phaseIdx);
}
}
size_t numDof = this->model().numGridDof();
const auto& comm = this->simulator().vanguard().grid().comm();
comm.sum(sumInvB.data(),sumInvB.size());
Scalar numTotalDof = comm.sum(numDof);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar avgB = numTotalDof / sumInvB[phaseIdx];
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
this->model().setEqWeight(activeSolventCompIdx, avgB);
}
}
typename Vanguard::TransmissibilityType transmissibilities_;
std::shared_ptr<EclMaterialLawManager> materialLawManager_;
std::shared_ptr<EclThermalLawManager> thermalLawManager_;
EclThresholdPressure<TypeTag> thresholdPressures_;
std::vector<InitialFluidState> initialFluidStates_;
constexpr static Scalar freeGasMinSaturation_ = 1e-7;
bool enableDriftCompensation_;
GlobalEqVector drift_;
EclWellModel wellModel_;
bool enableAquifers_;
EclAquiferModel aquiferModel_;
bool enableEclOutput_;
std::unique_ptr<EclWriterType> eclWriter_;
PffGridVector<GridView, Stencil, PffDofData_, DofMapper> pffDofData_;
TracerModel tracerModel_;
EclActionHandler actionHandler_;
template<class T>
struct BCData
{
std::array<std::vector<T>,6> data;
void resize(size_t size, T defVal)
{
for (auto& d : data)
d.resize(size, defVal);
}
const std::vector<T>& operator()(FaceDir::DirEnum dir) const
{
if (dir == FaceDir::DirEnum::Unknown)
throw std::runtime_error("Tried to access BC data for the 'Unknown' direction");
int idx = 0;
int div = static_cast<int>(dir);
while ((div /= 2) >= 1)
++idx;
assert(idx >= 0 && idx <= 5);
return data[idx];
}
std::vector<T>& operator()(FaceDir::DirEnum dir)
{
return const_cast<std::vector<T>&>(std::as_const(*this)(dir));
}
};
BCData<bool> freebc_;
BCData<bool> thermalbc_;
BCData<RateVector> massratebc_;
BCData<std::tuple<BCComponent, std::optional<double>, std::optional<double>>> dirichlet_;
bool nonTrivialBoundaryConditions_ = false;
};
} // namespace Opm
#endif