opm-simulators/opm/autodiff/SimulatorIncompTwophaseAd.cpp
2017-02-10 16:07:25 +01:00

645 lines
28 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/autodiff/SimulatorIncompTwophaseAd.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/grid.h>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/core/utility/DataMap.hpp>
#include <opm/simulators/vtk/writeVtkData.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/props/IncompPropertiesInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
#include <opm/core/transport/implicit/TransportSolverTwophaseImplicit.hpp>
#include <opm/autodiff/TransportSolverTwophaseAd.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include <memory>
#include <numeric>
#include <fstream>
#include <iostream>
namespace Opm
{
class SimulatorIncompTwophaseAd::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state);
private:
// Data.
// Parameters for output.
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Parameters for transport solver.
int num_transport_substeps_;
std::string transport_solver_type_;
bool use_segregation_split_;
// Observed objects.
const UnstructuredGrid& grid_;
const IncompPropertiesInterface& props_;
const RockCompressibility* rock_comp_props_;
WellsManager& wells_manager_;
const Wells* wells_;
const std::vector<double>& src_;
const FlowBoundaryConditions* bcs_;
// Solvers
IncompTpfa psolver_;
std::unique_ptr<TransportSolverTwophaseInterface> tsolver_;
// Misc. data
std::vector<int> allcells_;
};
SimulatorIncompTwophaseAd::SimulatorIncompTwophaseAd(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, src, bcs, linsolver, gravity));
}
SimulatorReport SimulatorIncompTwophaseAd::run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state)
{
return pimpl_->run(timer, state, well_state);
}
static void reportVolumes(std::ostream &os, double satvol[2], double tot_porevol_init,
double tot_injected[2], double tot_produced[2],
double injected[2], double produced[2],
double init_satvol[2])
{
std::cout.precision(5);
const int width = 18;
os << "\nVolume balance report (all numbers relative to total pore volume).\n";
os << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
os << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
os << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
os << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
os << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
os << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
os << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::endl;
os.precision(8);
}
static void outputStateVtk(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/vtk_files";
boost::filesystem::path fpath(vtkfilename.str());
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
OPM_THROW(std::runtime_error, "Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
static void outputVectorMatlab(const std::string& name,
const std::vector<int>& vec,
const int step,
const std::string& output_dir)
{
std::ostringstream fname;
fname << output_dir << "/" << name;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(file, "\n"));
}
static void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
static bool allNeumannBCs(const FlowBoundaryConditions* bcs)
{
if (bcs == NULL) {
return true;
} else {
return std::find(bcs->type, bcs->type + bcs->nbc, BC_PRESSURE)
== bcs->type + bcs->nbc;
}
}
static bool allRateWells(const Wells* wells)
{
if (wells == NULL) {
return true;
}
const int nw = wells->number_of_wells;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells->ctrls[w];
if (well_controls_well_is_open( wc )) {
if (well_controls_get_current_type(wc) == BHP ) {
return false;
}
}
}
return true;
}
SimulatorIncompTwophaseAd::Impl::Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
: transport_solver_type_(param.getDefault<std::string>("transport_solver_type", "ad")),
use_segregation_split_(param.getDefault("use_segregation_split", false)),
grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
wells_manager_(wells_manager),
wells_(wells_manager.c_wells()),
src_(src),
bcs_(bcs),
psolver_(grid, props, rock_comp_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells(), src, bcs)
{
// Initialize transport solver.
if (transport_solver_type_ == "reorder") {
tsolver_.reset(new Opm::TransportSolverTwophaseReorder(grid,
props,
use_segregation_split_ ? gravity : NULL,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30)));
} else if (transport_solver_type_ == "implicit") {
if (rock_comp_props && rock_comp_props->isActive()) {
OPM_THROW(std::runtime_error, "The implicit transport solver cannot handle rock compressibility.");
}
if (use_segregation_split_) {
OPM_THROW(std::runtime_error, "The implicit transport solver is not set up to use segregation splitting.");
}
std::vector<double> porevol;
computePorevolume(grid, props.porosity(), porevol);
tsolver_.reset(new Opm::TransportSolverTwophaseImplicit(grid,
props,
porevol,
gravity,
psolver_.getHalfTrans(),
param));
} else if (transport_solver_type_ == "ad") {
if (rock_comp_props && rock_comp_props->isActive()) {
OPM_THROW(std::runtime_error, "The implicit ad transport solver cannot handle rock compressibility.");
}
if (use_segregation_split_) {
OPM_THROW(std::runtime_error, "The implicit ad transport solver is not set up to use segregation splitting.");
}
std::vector<double> porevol;
computePorevolume(grid, props.porosity(), porevol);
tsolver_.reset(new Opm::TransportSolverTwophaseAd(grid,
props,
linsolver,
gravity,
param));
} else {
OPM_THROW(std::runtime_error, "Unknown transport solver type: " << transport_solver_type_);
}
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Transport related init.
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
// Misc init.
const int num_cells = Opm::AutoDiffGrid::numCells(grid);
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
SimulatorReport SimulatorIncompTwophaseAd::Impl::run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_satvol[2] = { 0.0 };
double satvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
if (transport_solver_type_ == "reorder") {
// This use of dynamic_cast is not ideal, but should be safe.
outputVectorMatlab(std::string("reorder_it"),
dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
timer.currentStepNum(), output_dir_);
}
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if rock is incompressible, and
// there are no pressure conditions (bcs or wells).
// It is deemed sufficient for now to renormalize
// using geometric volume instead of pore volume.
if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = Opm::AutoDiffGrid::numCells(grid_);
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*
Opm::AutoDiffGrid::cellVolume(grid_, cell);
av_press += state.pressure()[cell]*
Opm::AutoDiffGrid::cellVolume(grid_, cell);
tot_vol += Opm::AutoDiffGrid::cellVolume(grid_, cell);
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
// Stop timer and report.
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
sreport.pressure_time = pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Solve transport.
transport_timer.start();
double stepsize = timer.currentStepLength();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_->solve(&initial_porevol[0], &transport_src[0], stepsize, state);
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
substep_injected, substep_produced);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
if (transport_solver_type_ == "reorder" && use_segregation_split_) {
// Again, unfortunate but safe use of dynamic_cast.
// Possible solution: refactor gravity solver to its own class.
dynamic_cast<TransportSolverTwophaseReorder&>(*tsolver_)
.solveGravity(&initial_porevol[0], stepsize, state);
}
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.saturation(),
timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
sreport.transport_time = tt;
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
reportVolumes(std::cout,satvol, tot_porevol_init,
tot_injected, tot_produced,
injected, produced,
init_satvol);
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
}
}
if (output_) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
if (transport_solver_type_ == "reorder") {
// This use of dynamic_cast is not ideal, but should be safe.
outputVectorMatlab(std::string("reorder_it"),
dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
timer.currentStepNum(), output_dir_);
}
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
tstep_os.close();
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = ptime;
report.transport_time = ttime;
report.total_time = total_timer.secsSinceStart();
return report;
}
} // namespace Opm