mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 10:40:21 -06:00
4f052e466b
Tested on SPE5 and Model2
97 lines
5.1 KiB
C++
97 lines
5.1 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_WELLDENSITYSEGMENTED_HEADER_INCLUDED
|
|
#define OPM_WELLDENSITYSEGMENTED_HEADER_INCLUDED
|
|
|
|
#include <vector>
|
|
|
|
struct Wells;
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
class WellStateFullyImplicitBlackoil;
|
|
class WellStateFullyImplicitBlackoilSolvent;
|
|
struct PhaseUsage;
|
|
|
|
|
|
/// A class giving a well model, by which we mean a way to compute
|
|
/// the pressure deltas of each perforation and the bottom-hole
|
|
/// pressure. This class contains an explicit model, that uses a
|
|
/// different density for each well segment, that is between each
|
|
/// pair of perforations.
|
|
class WellDensitySegmented
|
|
{
|
|
public:
|
|
/// Compute well segment densities
|
|
/// Notation: N = number of perforations, P = number of phases.
|
|
/// \param[in] wells struct with static well info
|
|
/// \param[in] wstate dynamic well solution information, only perfRates() is used
|
|
/// \param[in] phase_usage specifies which phases are active and not
|
|
/// \param[in] b_perf inverse ('little b') formation volume factor, size NP, P values per perforation
|
|
/// \param[in] rsmax_perf saturation point for rs (gas in oil) at each perforation, size N
|
|
/// \param[in] rvmax_perf saturation point for rv (oil in gas) at each perforation, size N
|
|
/// \param[in] surf_dens surface densities for active components, size NP, P values per perforation
|
|
static std::vector<double> computeConnectionDensities(const Wells& wells,
|
|
const WellStateFullyImplicitBlackoil& wstate,
|
|
const PhaseUsage& phase_usage,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf);
|
|
|
|
|
|
|
|
/// Compute well segment densities for solvent model
|
|
/// Notation: N = number of perforations, P = number of phases.
|
|
/// \param[in] wells struct with static well info
|
|
/// \param[in] wstate dynamic well solution information, perfRates() and solventFraction() is used
|
|
/// \param[in] phase_usage specifies which phases are active and not
|
|
/// \param[in] b_perf inverse ('little b') formation volume factor, size NP, P values per perforation
|
|
/// \param[in] rsmax_perf saturation point for rs (gas in oil) at each perforation, size N
|
|
/// \param[in] rvmax_perf saturation point for rv (oil in gas) at each perforation, size N
|
|
/// \param[in] surf_dens surface densities for active components, size NP, P values per perforation
|
|
static std::vector<double> computeConnectionDensities(const Wells& wells,
|
|
const WellStateFullyImplicitBlackoilSolvent& wstate,
|
|
const PhaseUsage& phase_usage,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf);
|
|
|
|
|
|
|
|
|
|
/// Compute pressure deltas.
|
|
/// Notation: N = number of perforations, P = number of phases.
|
|
/// \param[in] wells struct with static well info
|
|
/// \param[in] z_perf depth values for each perforation, size N
|
|
/// \param[in] dens_perf densities for each perforation, size N (typically computed using computeConnectionDensities)
|
|
/// \param[in] gravity gravity acceleration constant
|
|
static std::vector<double> computeConnectionPressureDelta(const Wells& wells,
|
|
const std::vector<double>& z_perf,
|
|
const std::vector<double>& dens_perf,
|
|
const double gravity);
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_WELLDENSITYSEGMENTED_HEADER_INCLUDED
|