mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-29 10:40:59 -06:00
787 lines
32 KiB
C++
787 lines
32 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
|
|
|
#include <opm/common/utility/numeric/RootFinders.hpp>
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/VFPInjTable.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
|
|
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
#include <opm/simulators/wells/VFPProperties.hpp>
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
|
|
static constexpr bool extraBhpAtThpLimitOutput = false;
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
bool
|
|
WellBhpThpCalculator::wellHasTHPConstraints(const SummaryState& summaryState) const
|
|
{
|
|
const auto& well_ecl = well_.wellEcl();
|
|
if (well_ecl.isInjector()) {
|
|
const auto controls = well_ecl.injectionControls(summaryState);
|
|
if (controls.hasControl(Well::InjectorCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
if (well_ecl.isProducer()) {
|
|
const auto controls = well_ecl.productionControls(summaryState);
|
|
if (controls.hasControl(Well::ProducerCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
double WellBhpThpCalculator::getTHPConstraint(const SummaryState& summaryState) const
|
|
{
|
|
const auto& well_ecl = well_.wellEcl();
|
|
if (well_ecl.isInjector()) {
|
|
const auto& controls = well_ecl.injectionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
if (well_ecl.isProducer( )) {
|
|
const auto& controls = well_ecl.productionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
double WellBhpThpCalculator::mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
|
|
{
|
|
const auto& well_ecl = well_.wellEcl();
|
|
if (well_ecl.isInjector()) {
|
|
const auto& controls = well_ecl.injectionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
if (well_ecl.isProducer( )) {
|
|
const auto& controls = well_ecl.productionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
double WellBhpThpCalculator::calculateThpFromBhp(const std::vector<double>& rates,
|
|
const double bhp,
|
|
const double rho,
|
|
const double alq,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
const double aqua = rates[Water];
|
|
const double liquid = rates[Oil];
|
|
const double vapour = rates[Gas];
|
|
|
|
// pick the density in the top layer
|
|
double thp = 0.0;
|
|
if (well_.isInjector()) {
|
|
const int table_id = well_.wellEcl().vfp_table_number();
|
|
const double vfp_ref_depth = well_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
|
|
thp = well_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
}
|
|
else if (well_.isProducer()) {
|
|
const int table_id = well_.wellEcl().vfp_table_number();
|
|
const double vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
|
|
thp = well_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
}
|
|
|
|
return thp;
|
|
}
|
|
|
|
std::optional<double>
|
|
WellBhpThpCalculator::
|
|
computeBhpAtThpLimitProd(const std::function<std::vector<double>(const double)>& frates,
|
|
const SummaryState& summary_state,
|
|
const double maxPerfPress,
|
|
const double rho,
|
|
const double alq_value,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_.wellEcl().productionControls(summary_state);
|
|
const auto& table = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double thp_limit = this->getTHPConstraint(summary_state);
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
|
|
auto fbhp = [this, &controls, thp_limit, dp, alq_value](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const bool use_vfpexp = well_.useVfpExplicit();
|
|
return well_.vfpProperties()->getProd()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, alq_value, wfr, gfr, use_vfpexp) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Find the bhp-point where production becomes nonzero.
|
|
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
|
auto bhp_max = this->bhpMax(fflo, controls.bhp_limit, maxPerfPress, table.getFloAxis().front(), deferred_logger);
|
|
|
|
// could not solve for the bhp-point, we could not continue to find the bhp
|
|
if (!bhp_max.has_value()) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to not being able to "
|
|
"find bhp-point where production becomes non-zero for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
const std::array<double, 2> range {controls.bhp_limit, *bhp_max};
|
|
return this->computeBhpAtThpLimit(frates, fbhp, range, deferred_logger);
|
|
}
|
|
|
|
std::optional<double>
|
|
WellBhpThpCalculator::
|
|
computeBhpAtThpLimitInj(const std::function<std::vector<double>(const double)>& frates,
|
|
const SummaryState& summary_state,
|
|
const double rho,
|
|
const double flo_rel_tol,
|
|
const int max_iteration,
|
|
const bool throwOnError,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
if (throwOnError) {
|
|
return computeBhpAtThpLimitInjImpl<ThrowOnError>(frates, summary_state,
|
|
rho, flo_rel_tol,
|
|
max_iteration, deferred_logger);
|
|
} else {
|
|
return computeBhpAtThpLimitInjImpl<WarnAndContinueOnError>(frates, summary_state,
|
|
rho, flo_rel_tol,
|
|
max_iteration, deferred_logger);
|
|
}
|
|
}
|
|
|
|
void WellBhpThpCalculator::updateThp(const double rho,
|
|
const std::function<double()>& alq_value,
|
|
const std::array<unsigned,3>& active,
|
|
WellState& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
auto& ws = well_state.well(well_.indexOfWell());
|
|
|
|
// When there is no vaild VFP table provided, we set the thp to be zero.
|
|
if (!well_.isVFPActive(deferred_logger) || well_.wellIsStopped()) {
|
|
ws.thp = 0;
|
|
return;
|
|
}
|
|
// For THP controlled wells, we know the thp value
|
|
bool thp_controlled = well_.isInjector() ? ws.injection_cmode == Well::InjectorCMode::THP:
|
|
ws.production_cmode == Well::ProducerCMode::THP;
|
|
if (thp_controlled) {
|
|
return;
|
|
}
|
|
|
|
// the well is under other control types, we calculate the thp based on bhp and rates
|
|
std::vector<double> rates(3, 0.0);
|
|
|
|
const PhaseUsage& pu = well_.phaseUsage();
|
|
if (active[Water]) {
|
|
rates[ Water ] = ws.surface_rates[pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active[Oil]) {
|
|
rates[ Oil ] = ws.surface_rates[pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active[Gas]) {
|
|
rates[ Gas ] = ws.surface_rates[pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
ws.thp = this->calculateThpFromBhp(rates, ws.bhp, rho, alq_value(), deferred_logger);
|
|
}
|
|
|
|
template<class EvalWell>
|
|
EvalWell WellBhpThpCalculator::
|
|
calculateBhpFromThp(const WellState& well_state,
|
|
const std::vector<EvalWell>& rates,
|
|
const Well& well,
|
|
const SummaryState& summaryState,
|
|
const double rho,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: when well is under THP control, the BHP is dependent on the rates,
|
|
// the well rates is also dependent on the BHP, so it might need to do some iteration.
|
|
// However, when group control is involved, change of the rates might impacts other wells
|
|
// so iterations on a higher level will be required. Some investigation might be needed when
|
|
// we face problems under THP control.
|
|
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
|
|
const EvalWell aqua = rates[Water];
|
|
const EvalWell liquid = rates[Oil];
|
|
const EvalWell vapour = rates[Gas];
|
|
|
|
// pick the reference density
|
|
// typically the reference in the top layer
|
|
if (well_.isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
const double vfp_ref_depth = well_.vfpProperties()->getInj()->getTable(controls.vfp_table_number).getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
return well_.vfpProperties()->getInj()->bhp(controls.vfp_table_number, aqua, liquid, vapour, well_.getTHPConstraint(summaryState)) - dp;
|
|
}
|
|
else if (well_.isProducer()) {
|
|
const auto& controls = well.productionControls(summaryState);
|
|
const double vfp_ref_depth = well_.vfpProperties()->getProd()->getTable(controls.vfp_table_number).getDatumDepth();
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(), vfp_ref_depth, rho, well_.gravity());
|
|
const auto& wfr = well_.vfpProperties()->getExplicitWFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const auto& gfr = well_.vfpProperties()->getExplicitGFR(controls.vfp_table_number, well_.indexOfWell());
|
|
const bool use_vfpexplicit = well_.useVfpExplicit();
|
|
return well_.vfpProperties()->getProd()->bhp(controls.vfp_table_number,
|
|
aqua, liquid, vapour,
|
|
well_.getTHPConstraint(summaryState),
|
|
well_.getALQ(well_state),
|
|
wfr, gfr, use_vfpexplicit) - dp;
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER for well " + well_.name(), deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<class ErrorPolicy>
|
|
std::optional<double>
|
|
WellBhpThpCalculator::
|
|
computeBhpAtThpLimitInjImpl(const std::function<std::vector<double>(const double)>& frates,
|
|
const SummaryState& summary_state,
|
|
const double rho,
|
|
const double flo_rel_tol,
|
|
const int max_iteration,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) is returned.
|
|
//
|
|
// In order to detect these situations, we will find piecewise
|
|
// linear approximations both to the inverse of the frates
|
|
// function and to the fbhp function.
|
|
//
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
// find the corresponding bhp values by solving the equation:
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
// the true inverse inflow function, at the same flo values as
|
|
// the VFP data.
|
|
//
|
|
// Then we extract a piecewise linear approximation from the
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
// values.
|
|
//
|
|
// When we have both piecewise linear curves defined on the
|
|
// same flo_sample points, it is easy to distinguish between
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
// in which to solve for the solution we want (with highest
|
|
// flow in case of 2 solutions).
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
// Make the fbhp() function.
|
|
const auto& controls = well_.wellEcl().injectionControls(summary_state);
|
|
const auto& table = well_.vfpProperties()->getInj()->getTable(controls.vfp_table_number);
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
const double thp_limit = this->getTHPConstraint(summary_state);
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(well_.refDepth(),
|
|
vfp_ref_depth,
|
|
rho, well_.gravity());
|
|
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
|
|
assert(rates.size() == 3);
|
|
return well_.vfpProperties()->getInj()
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp;
|
|
};
|
|
|
|
// Make the flo() function.
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
};
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
// limit point if necessary.
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
if (flo_samples[0] > 0.0) {
|
|
const double f0 = flo_samples[0];
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
}
|
|
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
}
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
std::vector<double> bhp_samples;
|
|
for (double flo_sample : flo_samples) {
|
|
if (flo_sample > flo_bhp_limit) {
|
|
// We would have to go over the bhp limit to obtain a
|
|
// flow of this magnitude. We associate all such flows
|
|
// with simply the bhp limit. The first one
|
|
// encountered is considered valid, the rest not. They
|
|
// are therefore skipped.
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
break;
|
|
}
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
return flo(frates(bhp)) - flo_sample;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = 10.0 * unit::barsa;
|
|
const double high = 800.0 * unit::barsa;
|
|
const double flo_tolerance = flo_rel_tol * std::fabs(flo_samples.back());
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<ErrorPolicy>::
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
bhp_samples.push_back(solved_bhp);
|
|
}
|
|
catch (...) {
|
|
// Use previous value (or max value if at start) if we failed.
|
|
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + well_.name());
|
|
}
|
|
}
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
}
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
std::string dbgmsg;
|
|
dbgmsg += "flo: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
}
|
|
dbgmsg += "\nbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
}
|
|
dbgmsg += "\nfbhp: ";
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
}
|
|
OpmLog::debug(dbgmsg);
|
|
}
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
// We only look at the valid
|
|
int sign_change_index = -1;
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
if (curr * next < 0.0) {
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
}
|
|
}
|
|
|
|
// Handle the no solution case.
|
|
if (sign_change_index == -1) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
// TODO: replace hardcoded low/high limits.
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
const double high = bhp_samples[sign_change_index];
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
if (low == high) {
|
|
// We are in the high flow regime where the bhp_samples
|
|
// are all equal to the bhp_limit.
|
|
assert(low == controls.bhp_limit);
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<ErrorPolicy>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
OpmLog::debug("***** " + well_.name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
}
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
std::optional<double>
|
|
WellBhpThpCalculator::
|
|
bhpMax(const std::function<double(const double)>& fflo,
|
|
const double bhp_limit,
|
|
const double maxPerfPress,
|
|
const double vfp_flo_front,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Find the bhp-point where production becomes nonzero.
|
|
double bhp_max = 0.0;
|
|
double low = bhp_limit;
|
|
double high = maxPerfPress + 1.0 * unit::barsa;
|
|
double f_low = fflo(low);
|
|
double f_high = fflo(high);
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high));
|
|
}
|
|
int adjustments = 0;
|
|
const int max_adjustments = 10;
|
|
const double adjust_amount = 5.0 * unit::barsa;
|
|
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
|
// Same sign, adjust high to see if we can flip it.
|
|
high += adjust_amount;
|
|
f_high = fflo(high);
|
|
++adjustments;
|
|
}
|
|
if (f_low * f_high > 0.0) {
|
|
if (f_low > 0.0) {
|
|
// Even at the BHP limit, we are injecting.
|
|
// There will be no solution here, return an
|
|
// empty optional.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to inoperability for well " + well_.name());
|
|
return std::nullopt;
|
|
} else {
|
|
// Still producing, even at high bhp.
|
|
assert(f_high < 0.0);
|
|
bhp_max = high;
|
|
}
|
|
} else {
|
|
// Bisect to find a bhp point where we produce, but
|
|
// not a large amount ('eps' below).
|
|
const double eps = 0.1 * std::fabs(vfp_flo_front);
|
|
const int maxit = 50;
|
|
int it = 0;
|
|
while (std::fabs(f_low) > eps && it < maxit) {
|
|
const double curr = 0.5*(low + high);
|
|
const double f_curr = fflo(curr);
|
|
if (f_curr * f_low > 0.0) {
|
|
low = curr;
|
|
f_low = f_curr;
|
|
} else {
|
|
high = curr;
|
|
f_high = f_curr;
|
|
}
|
|
++it;
|
|
}
|
|
if (it < maxit) {
|
|
bhp_max = low;
|
|
} else {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Bisect did not find the bhp-point where we produce for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" f(low) = " + std::to_string(f_low) +
|
|
" f(high) = " + std::to_string(f_high) +
|
|
" bhp_max = " + std::to_string(bhp_max));
|
|
}
|
|
return bhp_max;
|
|
}
|
|
|
|
std::optional<double>
|
|
WellBhpThpCalculator::
|
|
computeBhpAtThpLimit(const std::function<std::vector<double>(const double)>& frates,
|
|
const std::function<double(const std::vector<double>)>& fbhp,
|
|
const std::array<double, 2>& range,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Given a VFP function returning bhp as a function of phase
|
|
// rates and thp:
|
|
// fbhp(rates, thp),
|
|
// a function extracting the particular flow rate used for VFP
|
|
// lookups:
|
|
// flo(rates)
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
// frates(bhp)
|
|
// we want to solve the equation:
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
// for bhp.
|
|
//
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
// highest rate) should be returned.
|
|
|
|
// Define the equation we want to solve.
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
return fbhp(frates(bhp)) - bhp;
|
|
};
|
|
|
|
// Find appropriate brackets for the solution.
|
|
std::optional<double> approximate_solution;
|
|
double low, high;
|
|
// trying to use bisect way to locate a bracket
|
|
bool finding_bracket = this->bisectBracket(eq, range, low, high, approximate_solution, deferred_logger);
|
|
|
|
// based on the origional design, if an approximate solution is suggested, we use this value directly
|
|
// in the long run, we might change it
|
|
if (approximate_solution.has_value()) {
|
|
return *approximate_solution;
|
|
}
|
|
|
|
if (!finding_bracket) {
|
|
deferred_logger.debug(" Trying the brute force search to bracket the bhp for last attempt ");
|
|
finding_bracket = this->bruteForceBracket(eq, range, low, high, deferred_logger);
|
|
}
|
|
|
|
if (!finding_bracket) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
"Robust bhp(thp) solve failed due to not being able to "
|
|
"bracket the bhp solution with the brute force search for " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
const int max_iteration = 100;
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
int iteration = 0;
|
|
try {
|
|
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
return solved_bhp;
|
|
}
|
|
catch (...) {
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
"Robust bhp(thp) solve failed for well " + well_.name());
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
bool
|
|
WellBhpThpCalculator::
|
|
bisectBracket(const std::function<double(const double)>& eq,
|
|
const std::array<double, 2>& range,
|
|
double& low, double& high,
|
|
std::optional<double>& approximate_solution,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
bool finding_bracket = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
|
|
double eq_high = eq(high);
|
|
double eq_low = eq(low);
|
|
const double eq_bhplimit = eq_low;
|
|
if constexpr (extraBhpAtThpLimitOutput) {
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + well_.name() +
|
|
" low = " + std::to_string(low) +
|
|
" high = " + std::to_string(high) +
|
|
" eq(low) = " + std::to_string(eq_low) +
|
|
" eq(high) = " + std::to_string(eq_high));
|
|
}
|
|
if (eq_low * eq_high > 0.0) {
|
|
// Failed to bracket the zero.
|
|
// If this is due to having two solutions, bisect until bracketed.
|
|
double abs_low = std::fabs(eq_low);
|
|
double abs_high = std::fabs(eq_high);
|
|
int bracket_attempts = 0;
|
|
const int max_bracket_attempts = 20;
|
|
double interval = high - low;
|
|
const double min_interval = 1.0 * unit::barsa;
|
|
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
|
if (abs_high < abs_low) {
|
|
low = 0.5 * (low + high);
|
|
eq_low = eq(low);
|
|
abs_low = std::fabs(eq_low);
|
|
} else {
|
|
high = 0.5 * (low + high);
|
|
eq_high = eq(high);
|
|
abs_high = std::fabs(eq_high);
|
|
}
|
|
++bracket_attempts;
|
|
}
|
|
|
|
if (eq_low * eq_high <= 0.) {
|
|
// We have a bracket!
|
|
finding_bracket = true;
|
|
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
|
// If so, that is the bracket we shall use, choosing the solution with the
|
|
// highest flow.
|
|
if (eq_low * eq_bhplimit <= 0.0) {
|
|
high = low;
|
|
low = range[0];
|
|
}
|
|
} else { // eq_low * eq_high > 0.0
|
|
// Still failed bracketing!
|
|
const double limit = 0.1 * unit::barsa;
|
|
if (std::min(abs_low, abs_high) < limit) {
|
|
// Return the least bad solution if less off than 0.1 bar.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) not solved precisely for well " + well_.name());
|
|
approximate_solution = abs_low < abs_high ? low : high;
|
|
} else {
|
|
// Return failure.
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
"Robust bhp(thp) solve failed due to bracketing failure for well " +
|
|
well_.name());
|
|
}
|
|
}
|
|
} else {
|
|
finding_bracket = true;
|
|
}
|
|
return finding_bracket;
|
|
}
|
|
|
|
bool
|
|
WellBhpThpCalculator::
|
|
bruteForceBracket(const std::function<double(const double)>& eq,
|
|
const std::array<double, 2>& range,
|
|
double& low, double& high,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
bool finding_bracket = false;
|
|
low = range[0];
|
|
high = range[1];
|
|
const int sample_number = 100;
|
|
const double interval = (high - low) / sample_number;
|
|
double eq_low = eq(low);
|
|
double eq_high;
|
|
for (int i = 0; i < sample_number + 1; ++i) {
|
|
high = range[0] + interval * i;
|
|
eq_high = eq(high);
|
|
if (eq_high * eq_low <= 0.) {
|
|
finding_bracket = true;
|
|
break;
|
|
}
|
|
low = high;
|
|
eq_low = eq_high;
|
|
}
|
|
if (finding_bracket) {
|
|
deferred_logger.debug(
|
|
" brute force solve found low " + std::to_string(low) + " with eq_low " + std::to_string(eq_low) +
|
|
" high " + std::to_string(high) + " with eq_high " + std::to_string(eq_high));
|
|
}
|
|
return finding_bracket;
|
|
}
|
|
|
|
#define INSTANCE(...) \
|
|
template __VA_ARGS__ WellBhpThpCalculator:: \
|
|
calculateBhpFromThp<__VA_ARGS__>(const WellState&, \
|
|
const std::vector<__VA_ARGS__>&, \
|
|
const Well&, \
|
|
const SummaryState&, \
|
|
const double, \
|
|
DeferredLogger&) const;
|
|
|
|
INSTANCE(double)
|
|
INSTANCE(DenseAd::Evaluation<double,3,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,4,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,5,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,6,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,7,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,8,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,9,0u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,4u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,5u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,6u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,7u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,8u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,9u>)
|
|
INSTANCE(DenseAd::Evaluation<double,-1,10u>)
|
|
|
|
} // namespace Opm
|