opm-simulators/ebos/eclmpiserializer.hh
Arne Morten Kvarving 7362386d3d changed: split out serialization in separate class
make it a template over a packer.
make EclMpiSerializer an instance of this template with
a MPI based packer, and move broadcasting functionality
to the new class
2022-09-16 13:11:45 +02:00

622 lines
18 KiB
C++

/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef ECL_MPI_SERIALIZER_HH
#define ECL_MPI_SERIALIZER_HH
#include <opm/simulators/utils/MPIPacker.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
#include <algorithm>
#include <functional>
#include <map>
#include <optional>
#include <set>
#include <type_traits>
#include <utility>
#include <unordered_map>
#include <unordered_set>
#include <variant>
#include <vector>
namespace Opm {
namespace detail {
template<typename ...Ts>
struct MakeVariantImpl
{
template<std::size_t Index, typename, typename ...Rest>
static decltype(auto) make_variant(std::size_t index)
{
if(Index == index)
return std::variant<Ts...>{std::in_place_index_t<Index>{}};
if constexpr(sizeof...(Rest) != 0)
return make_variant<Index + 1, Rest...>(index);
else
throw std::runtime_error("Invalid variant index");
}
};
template<typename ...Ts>
decltype(auto) make_variant(std::size_t index)
{
return detail::MakeVariantImpl<Ts...>::template make_variant<0, Ts...>(index);
}
template<class T>
using remove_cvr_t = std::remove_cv_t<std::remove_reference_t<T>>;
} // namespace detail
/*! \brief Class for (de-)serializing.
*! \details If the class has a serializeOp member this is used,
* if not it is passed on to the underlying packer.
*/
template<class Packer>
class Serializer {
public:
//! \brief Constructor.
//! \param packer Packer to use
explicit Serializer(const Packer& packer) :
m_packer(packer)
{}
//! \brief Applies current serialization op to the passed data.
template<class T>
void operator()(const T& data)
{
if constexpr (is_ptr<T>::value) {
ptr(data);
} else if constexpr (is_pair_or_tuple<T>::value) {
tuple(data);
} else if constexpr (is_variant<T>::value) {
variant(data);
} else if constexpr (is_optional<T>::value) {
optional(data);
} else if constexpr (is_vector<T>::value) {
vector(data);
} else if constexpr (is_map<T>::value) {
map(data);
} else if constexpr (is_array<T>::value) {
array(data);
} else if constexpr (is_set<T>::value) {
set(data);
} else if constexpr (has_serializeOp<detail::remove_cvr_t<T>>::value) {
const_cast<T&>(data).serializeOp(*this);
} else {
if (m_op == Operation::PACKSIZE)
m_packSize += m_packer.packSize(data);
else if (m_op == Operation::PACK)
m_packer.pack(data, m_buffer, m_position);
else if (m_op == Operation::UNPACK)
m_packer.unpack(const_cast<T&>(data), m_buffer, m_position);
}
}
//! \brief Call this to serialize data.
//! \tparam T Type of class to serialize
//! \param data Class to serialize
template<class T>
void pack(const T& data)
{
m_op = Operation::PACKSIZE;
m_packSize = 0;
(*this)(data);
m_position = 0;
m_buffer.resize(m_packSize);
m_op = Operation::PACK;
(*this)(data);
}
//! \brief Call this to serialize data.
//! \tparam T Type of class to serialize
//! \param data Class to serialize
template<class... Args>
void pack(const Args&... data)
{
m_op = Operation::PACKSIZE;
m_packSize = 0;
variadic_call(data...);
m_position = 0;
m_buffer.resize(m_packSize);
m_op = Operation::PACK;
variadic_call(data...);
}
//! \brief Call this to de-serialize data.
//! \tparam T Type of class to de-serialize
//! \param data Class to de-serialize
template<class T>
void unpack(T& data)
{
m_position = 0;
m_op = Operation::UNPACK;
(*this)(data);
}
//! \brief Call this to de-serialize data.
//! \tparam T Type of class to de-serialize
//! \param data Class to de-serialize
template<class... Args>
void unpack(Args&... data)
{
m_position = 0;
m_op = Operation::UNPACK;
variadic_call(data...);
}
//! \brief Returns current position in buffer.
size_t position() const
{
return m_position;
}
//! \brief Returns true if we are currently doing a serialization operation.
bool isSerializing() const
{
return m_op != Operation::UNPACK;
}
protected:
//! \brief Handler for vectors.
//! \tparam T Type for vector elements
//! \param data The vector to (de-)serialize
template <typename T>
void vector(const std::vector<T>& data)
{
if constexpr (std::is_pod_v<T>) {
if (m_op == Operation::PACKSIZE) {
(*this)(data.size());
m_packSize += m_packer.packSize(data.data(), data.size());
} else if (m_op == Operation::PACK) {
(*this)(data.size());
m_packer.pack(data.data(), data.size(), m_buffer, m_position);
} else if (m_op == Operation::UNPACK) {
std::size_t size = 0;
(*this)(size);
auto& data_mut = const_cast<std::vector<T>&>(data);
data_mut.resize(size);
m_packer.unpack(data_mut.data(), size, m_buffer, m_position);
}
} else {
if (m_op == Operation::UNPACK) {
std::size_t size = 0;
(*this)(size);
auto& data_mut = const_cast<std::vector<T>&>(data);
data_mut.resize(size);
std::for_each(data_mut.begin(), data_mut.end(), std::ref(*this));
} else {
(*this)(data.size());
std::for_each(data.begin(), data.end(), std::ref(*this));
}
}
}
//! \brief Handler for bool vectors.
//! \param data The vector to (de-)serialize
void vector(const std::vector<bool>& data)
{
if (m_op == Operation::UNPACK) {
std::size_t size = 0;
(*this)(size);
auto& data_mut = const_cast<std::vector<bool>&>(data);
data_mut.clear();
data_mut.reserve(size);
for (size_t i = 0; i < size; ++i) {
bool entry = false;
(*this)(entry);
data_mut.push_back(entry);
}
} else {
(*this)(data.size());
for (const auto entry : data) { // Not a reference: vector<bool> range
bool b = entry;
(*this)(b);
}
}
}
//! \brief Handler for arrays.
//! \param data The array to (de-)serialize
template <class Array>
void array(const Array& data)
{
using T = typename Array::value_type;
if constexpr (std::is_pod_v<T>) {
if (m_op == Operation::PACKSIZE)
m_packSize += m_packer.packSize(data.data(), data.size());
else if (m_op == Operation::PACK)
m_packer.pack(data.data(), data.size(), m_buffer, m_position);
else if (m_op == Operation::UNPACK) {
auto& data_mut = const_cast<Array&>(data);
m_packer.unpack(data_mut.data(), data_mut.size(), m_buffer, m_position);
}
} else {
std::for_each(data.begin(), data.end(), std::ref(*this));
}
}
//! \brief Handler for std::variant.
//! \param data The variant to (de-)serialize
template<class... Args>
void variant(const std::variant<Args...>& data)
{
if (m_op == Operation::UNPACK) {
std::size_t index = 0;
(*this)(index);
auto& data_mut = const_cast<std::variant<Args...>&>(data);
data_mut = detail::make_variant<Args...>(index);
std::visit(std::ref(*this), data_mut);
} else {
(*this)(data.index());
std::visit(std::ref(*this), data);
}
}
//! \brief Handler for std::optional.
//! \tparam T Type for data
//! \param data The optional to (de-)serialize
template<class T>
void optional(const std::optional<T>& data)
{
if (m_op == Operation::UNPACK) {
bool has = false;
(*this)(has);
if (has) {
T res;
(*this)(res);
const_cast<std::optional<T>&>(data) = res;
}
} else {
(*this)(data.has_value());
if (data.has_value()) {
(*this)(*data);
}
}
}
//! \brief Handler for std::tuple.
//! \param data The tuple to (de-)serialize
template<class Tuple>
void tuple(const Tuple& data)
{
tuple_call(data);
}
//! \brief Handler for maps.
//! \tparam Map map type
//! \param map The map to (de-)serialize
template<class Map>
void map(const Map& data)
{
if (m_op == Operation::UNPACK) {
std::size_t size = 0;
(*this)(size);
auto& data_mut = const_cast<Map&>(data);
for (size_t i = 0; i < size; ++i) {
typename Map::value_type entry;
(*this)(entry);
data_mut.insert(entry);
}
} else {
(*this)(data.size());
std::for_each(data.begin(), data.end(), std::ref(*this));
}
}
//! \brief Handler for sets.
//! \tparam Set set type
//! \param data The set to (de-)serialize
template<class Set>
void set(const Set& data)
{
if (m_op == Operation::UNPACK) {
std::size_t size = 0;
(*this)(size);
auto& data_mut = const_cast<Set&>(data);
for (size_t i = 0; i < size; ++i) {
typename Set::value_type entry;
(*this)(entry);
data_mut.insert(entry);
}
} else {
(*this)(data.size());
std::for_each(data.begin(), data.end(), std::ref(*this));
}
}
template<typename T, typename... Args>
void variadic_call(T& first,
Args&&... args)
{
(*this)(first);
if constexpr (sizeof...(args) > 0)
variadic_call(std::forward<Args>(args)...);
}
template<std::size_t I = 0, typename Tuple>
typename std::enable_if<I == std::tuple_size<Tuple>::value, void>::type
tuple_call(const Tuple&)
{
}
template<std::size_t I = 0, typename Tuple>
typename std::enable_if<I != std::tuple_size<Tuple>::value, void>::type
tuple_call(const Tuple& tuple)
{
(*this)(std::get<I>(tuple));
tuple_call<I+1>(tuple);
}
//! \brief Enumeration of operations.
enum class Operation {
PACKSIZE, //!< Calculating serialization buffer size
PACK, //!< Performing serialization
UNPACK //!< Performing de-serialization
};
//! \brief Predicate for detecting vectors.
template<class T>
struct is_vector {
constexpr static bool value = false;
};
template<class T1, class Allocator>
struct is_vector<std::vector<T1,Allocator>> {
constexpr static bool value = true;
};
//! \brief Predicate for detecting variants.
template<class T>
struct is_variant {
constexpr static bool value = false;
};
template<class... Ts>
struct is_variant<std::variant<Ts...>> {
constexpr static bool value = true;
};
//! \brief Predicate for detecting pairs and tuples.
template<class T>
struct is_pair_or_tuple {
constexpr static bool value = false;
};
template<class... Ts>
struct is_pair_or_tuple<std::tuple<Ts...>> {
constexpr static bool value = true;
};
template<class T1, class T2>
struct is_pair_or_tuple<std::pair<T1,T2>> {
constexpr static bool value = true;
};
//! \brief Predicate for smart pointers.
template<class T>
struct is_ptr {
constexpr static bool value = false;
};
template<class T1>
struct is_ptr<std::shared_ptr<T1>> {
constexpr static bool value = true;
};
template<class T1, class Deleter>
struct is_ptr<std::unique_ptr<T1, Deleter>> {
constexpr static bool value = true;
};
//! \brief Predicate for std::optional.
template<class T>
struct is_optional {
constexpr static bool value = false;
};
template<class T1>
struct is_optional<std::optional<T1>> {
constexpr static bool value = true;
};
//! \brief Predicate for maps
template<class T>
struct is_map {
constexpr static bool value = false;
};
template<class Key, class T, class Compare, class Allocator>
struct is_map<std::map<Key,T,Compare,Allocator>> {
constexpr static bool value = true;
};
template<class Key, class T, class Hash, class KeyEqual, class Allocator>
struct is_map<std::unordered_map<Key,T,Hash,KeyEqual,Allocator>> {
constexpr static bool value = true;
};
//! \brief Predicate for sets
template<class T>
struct is_set {
constexpr static bool value = false;
};
template<class Key, class Compare, class Allocator>
struct is_set<std::set<Key,Compare,Allocator>> {
constexpr static bool value = true;
};
template<class Key, class Hash, class KeyEqual, class Allocator>
struct is_set<std::unordered_set<Key,Hash,KeyEqual,Allocator>> {
constexpr static bool value = true;
};
//! \brief Predicate for arrays
template<class T>
struct is_array {
constexpr static bool value = false;
};
template<class T, std::size_t N>
struct is_array<std::array<T,N>> {
constexpr static bool value = true;
};
//! Detect existence of \c serializeOp member function
//!
//! Base case (no \c serializeOp member function)
template <typename, class = void>
struct has_serializeOp : public std::false_type {};
//! Detect existence of \c serializeOp member function
//!
//! Non-default, albeit common, case (type has \c serializeOp member
//! function)
template <typename T>
struct has_serializeOp<
T, std::void_t<decltype(std::declval<T>().serializeOp(std::declval<Serializer<Packer>&>()))>
> : public std::true_type {};
//! \brief Handler for smart pointers.
template<class PtrType>
void ptr(const PtrType& data)
{
using T1 = typename PtrType::element_type;
bool value = data ? true : false;
(*this)(value);
if (m_op == Operation::UNPACK && value) {
const_cast<PtrType&>(data).reset(new T1);
}
if (data) {
(*this)(*data);
}
}
const Packer& m_packer; //!< Packer to use
Operation m_op = Operation::PACKSIZE; //!< Current operation
size_t m_packSize = 0; //!< Required buffer size after PACKSIZE has been done
int m_position = 0; //!< Current position in buffer
std::vector<char> m_buffer; //!< Buffer for serialized data
};
class EclMpiSerializer : public Serializer<Mpi::Packer> {
public:
EclMpiSerializer(Parallel::Communication comm)
: Serializer<Mpi::Packer>(m_packer)
, m_packer(comm)
, m_comm(comm)
{}
//! \brief Serialize and broadcast on root process, de-serialize on
//! others.
//!
//! \tparam T Type of class to broadcast
//! \param data Class to broadcast
//! \param root Process to broadcast from
template<class T>
void broadcast(T& data, int root = 0)
{
if (m_comm.size() == 1)
return;
if (m_comm.rank() == root) {
try {
this->pack(data);
m_comm.broadcast(&m_packSize, 1, root);
m_comm.broadcast(m_buffer.data(), m_packSize, root);
} catch (...) {
m_packSize = std::numeric_limits<size_t>::max();
m_comm.broadcast(&m_packSize, 1, root);
throw;
}
} else {
m_comm.broadcast(&m_packSize, 1, root);
if (m_packSize == std::numeric_limits<size_t>::max()) {
throw std::runtime_error("Error detected in parallel serialization");
}
m_buffer.resize(m_packSize);
m_comm.broadcast(m_buffer.data(), m_packSize, root);
this->unpack(data);
}
}
template<typename... Args>
void broadcast(int root, Args&&... args)
{
if (m_comm.size() == 1)
return;
if (m_comm.rank() == root) {
try {
this->pack(std::forward<Args>(args)...);
m_comm.broadcast(&m_packSize, 1, root);
m_comm.broadcast(m_buffer.data(), m_packSize, root);
} catch (...) {
m_packSize = std::numeric_limits<size_t>::max();
m_comm.broadcast(&m_packSize, 1, root);
throw;
}
} else {
m_comm.broadcast(&m_packSize, 1, root);
if (m_packSize == std::numeric_limits<size_t>::max()) {
throw std::runtime_error("Error detected in parallel serialization");
}
m_buffer.resize(m_packSize);
m_comm.broadcast(m_buffer.data(), m_packSize, root);
this->unpack(std::forward<Args>(args)...);
}
}
//! \brief Serialize and broadcast on root process, de-serialize and append on
//! others.
//!
//! \tparam T Type of class to broadcast
//! \param data Class to broadcast
//! \param root Process to broadcast from
template<class T>
void append(T& data, int root = 0)
{
if (m_comm.size() == 1)
return;
T tmp;
T& bcast = m_comm.rank() == root ? data : tmp;
broadcast(bcast, root);
if (m_comm.rank() != root)
data.append(tmp);
}
private:
const Mpi::Packer m_packer; //!< Packer instance
Parallel::Communication m_comm; //!< Communicator to use
};
}
#endif