opm-simulators/opm/core/props/pvt/ThermalOilPvtWrapper.hpp
Jørgen Kvalsvik 04d605159f Change Deck access methods/types to references
opm-parser#677 changes the return types for the Deck family of classes.
This patch fixes all broken code from that patch set.

https://github.com/OPM/opm-parser/pull/677
2016-02-18 08:50:26 +01:00

394 lines
16 KiB
C++

/*
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_THERMAL_OIL_PVT_WRAPPER_HPP
#define OPM_THERMAL_OIL_PVT_WRAPPER_HPP
#include <opm/core/props/pvt/PvtInterface.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/OilvisctTable.hpp>
#include <vector>
namespace Opm
{
/// Class which wraps another (i.e., isothermal) PVT object into one which adds
/// temperature dependence of oil
class ThermalOilPvtWrapper : public PvtInterface
{
public:
ThermalOilPvtWrapper()
{}
/// set the tables which specify the temperature dependence of the oil viscosity
void initFromDeck(std::shared_ptr<const PvtInterface> isothermalPvt,
Opm::DeckConstPtr deck,
Opm::EclipseStateConstPtr eclipseState)
{
isothermalPvt_ = isothermalPvt;
int numRegions;
auto tables = eclipseState->getTableManager();
if (deck->hasKeyword("PVTO"))
numRegions = tables->getPvtoTables().size();
else if (deck->hasKeyword("PVDO"))
numRegions = tables->getPvdoTables().size();
else if (deck->hasKeyword("PVCDO"))
numRegions = deck->getKeyword("PVCDO").size();
else
OPM_THROW(std::runtime_error, "Oil phase was not initialized using a known way");
// viscosity
if (deck->hasKeyword("VISCREF")) {
oilvisctTables_ = &tables->getOilvisctTables();
const auto& viscrefKeyword = deck->getKeyword("VISCREF");
assert(int(oilvisctTables_->size()) == numRegions);
assert(int(viscrefKeyword.size()) == numRegions);
viscrefPress_.resize(numRegions);
viscrefRs_.resize(numRegions);
muRef_.resize(numRegions);
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
const auto& viscrefRecord = viscrefKeyword.getRecord(regionIdx);
viscrefPress_[regionIdx] = viscrefRecord.getItem("REFERENCE_PRESSURE").getSIDouble(0);
viscrefRs_[regionIdx] = viscrefRecord.getItem("REFERENCE_RS").getSIDouble(0);
// temperature used to calculate the reference viscosity [K]. the
// value does not really matter if the underlying PVT object really
// is isothermal...
double Tref = 273.15 + 20;
// compute the reference viscosity using the isothermal PVT object.
double tmp1, tmp2;
isothermalPvt_->mu(1,
&regionIdx,
&viscrefPress_[regionIdx],
&Tref,
&viscrefRs_[regionIdx],
&muRef_[regionIdx],
&tmp1,
&tmp2);
}
}
// quantities required for density. note that we just always use the values
// for the first EOS. (since EOS != PVT region.)
tref_ = 0.0;
if (deck->hasKeyword("THERMEX1")) {
oilCompIdx_ = deck->getKeyword("OCOMPIDX").getRecord(0).getItem("OIL_COMPONENT_INDEX").get< int >(0) - 1;
// always use the values of the first EOS
tref_ = deck->getKeyword("TREF").getRecord(0).getItem("TEMPERATURE").getSIDouble(oilCompIdx_);
pref_ = deck->getKeyword("PREF").getRecord(0).getItem("PRESSURE").getSIDouble(oilCompIdx_);
cref_ = deck->getKeyword("CREF").getRecord(0).getItem("COMPRESSIBILITY").getSIDouble(oilCompIdx_);
thermex1_ = deck->getKeyword("THERMEX1").getRecord(0).getItem("EXPANSION_COEFF").getSIDouble(oilCompIdx_);
}
}
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* z,
double* output_mu) const
{
if (oilvisctTables_)
// TODO: temperature dependence for viscosity depending on z
OPM_THROW(std::runtime_error,
"temperature dependent viscosity as a function of z "
"is not yet implemented!");
// compute the isothermal viscosity
isothermalPvt_->mu(n, pvtRegionIdx, p, T, z, output_mu);
}
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// compute the isothermal viscosity and its derivatives
isothermalPvt_->mu(n, pvtRegionIdx, p, T, r, output_mu, output_dmudp, output_dmudr);
if (!oilvisctTables_)
// isothermal case
return;
// temperature dependence
for (int i = 0; i < n; ++i) {
int regionIdx = getPvtRegionIndex_(pvtRegionIdx, i);
// calculate the viscosity of the isothermal keyword for the reference
// pressure given by the VISCREF keyword.
double muRef = muRef_[regionIdx];
// compute the viscosity deviation due to temperature
double alpha;
{
const OilvisctTable& oilvisctTable = oilvisctTables_->getTable<OilvisctTable>(regionIdx);
double muOilvisct = oilvisctTable.evaluate("Viscosity", T[i]);
alpha = muOilvisct/muRef;
}
output_mu[i] *= alpha;
output_dmudp[i] *= alpha;
output_dmudr[i] *= alpha;
// TODO (?): derivative of viscosity w.r.t. temperature.
}
}
virtual void mu(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
const PhasePresence* cond,
double* output_mu,
double* output_dmudp,
double* output_dmudr) const
{
// compute the isothermal viscosity and its derivatives
isothermalPvt_->mu(n, pvtRegionIdx, p, T, r, cond, output_mu, output_dmudp, output_dmudr);
if (!oilvisctTables_)
// isothermal case
return;
// temperature dependence
for (int i = 0; i < n; ++i) {
int regionIdx = getPvtRegionIndex_(pvtRegionIdx, i);
// calculate the viscosity of the isothermal keyword for the reference
// pressure given by the VISCREF keyword.
double muRef = muRef_[regionIdx];
// compute the viscosity deviation due to temperature
double alpha;
{
const OilvisctTable& oilvisctTable = oilvisctTables_->getTable<OilvisctTable>(regionIdx);
double muOilvisct = oilvisctTable.evaluate("Viscosity", T[i]);
alpha = muOilvisct/muRef;
}
output_mu[i] *= alpha;
output_dmudp[i] *= alpha;
output_dmudr[i] *= alpha;
// TODO (?): derivative of viscosity w.r.t. temperature.
}
}
virtual void B(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* z,
double* output_B) const
{
// isothermal case
isothermalPvt_->B(n, pvtRegionIdx, p, T, z, output_B);
if (thermex1_ <= 0.0)
// isothermal case
return;
// deal with the temperature dependence of the oil phase. we use equation
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
// using the isothermal keyword instead of using the value for the
// components, so the oil compressibility is already dealt with there. Note
// that we only do the part for the oil component here, the part for
// dissolved gas is ignored so far.
double cT1 = thermex1_;
double TRef = tref_;
for (int i = 0; i < n; ++i) {
double alpha = (1 + cT1*(T[i] - TRef));
output_B[i] *= alpha;
}
}
virtual void dBdp(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* z,
double* output_B,
double* output_dBdp) const
{
isothermalPvt_->dBdp(n, pvtRegionIdx, p, T, z, output_B, output_dBdp);
if (thermex1_ <= 0.0)
// isothermal case
return;
// deal with the temperature dependence of the oil phase. we use equation
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
// using the isothermal keyword instead of using the value for the
// components, so the oil compressibility is already dealt with there. Note
// that we only do the part for the oil component here, the part for
// dissolved gas is ignored so far.
double cT1 = thermex1_;
double TRef = tref_;
for (int i = 0; i < n; ++i) {
double alpha = (1 + cT1*(T[i] - TRef));
output_B[i] *= alpha;
output_dBdp[i] *= alpha;
}
}
virtual void b(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
isothermalPvt_->b(n, pvtRegionIdx, p, T, r, output_b, output_dbdp, output_dbdr);
if (thermex1_ <= 0.0)
// isothermal case
return;
// deal with the temperature dependence of the oil phase. we use equation
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
// using the isothermal keyword instead of using the value for the
// components, so the oil compressibility is already dealt with there. Note
// that we only do the part for the oil component here, the part for
// dissolved gas is ignored so far.
double cT1 = thermex1_;
double TRef = tref_;
for (int i = 0; i < n; ++i) {
double alpha = 1.0/(1 + cT1*(T[i] - TRef));
output_b[i] *= alpha;
output_dbdp[i] *= alpha;
output_dbdr[i] *= alpha;
}
}
virtual void b(const int n,
const int* pvtRegionIdx,
const double* p,
const double* T,
const double* r,
const PhasePresence* cond,
double* output_b,
double* output_dbdp,
double* output_dbdr) const
{
isothermalPvt_->b(n, pvtRegionIdx, p, T, r, cond, output_b, output_dbdp, output_dbdr);
if (thermex1_ <= 0.0)
// isothermal case
return;
// deal with the temperature dependence of the oil phase. we use equation
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
// using the isothermal keyword instead of using the value for the
// components, so the oil compressibility is already dealt with there. Note
// that we only do the part for the oil component here, the part for
// dissolved gas is ignored so far.
double cT1 = thermex1_;
double TRef = tref_;
for (int i = 0; i < n; ++i) {
double alpha = 1.0/(1 + cT1*(T[i] - TRef));
output_b[i] *= alpha;
output_dbdp[i] *= alpha;
output_dbdr[i] *= alpha;
}
}
virtual void rsSat(const int n,
const int* pvtRegionIdx,
const double* p,
double* output_rsSat,
double* output_drsSatdp) const
{
isothermalPvt_->rsSat(n, pvtRegionIdx, p, output_rsSat, output_drsSatdp);
}
virtual void rvSat(const int n,
const int* pvtRegionIdx,
const double* p,
double* output_rvSat,
double* output_drvSatdp) const
{
isothermalPvt_->rvSat(n, pvtRegionIdx, p, output_rvSat, output_drvSatdp);
}
virtual void R(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_R) const
{
isothermalPvt_->R(n, pvtRegionIdx, p, z, output_R);
}
virtual void dRdp(const int n,
const int* pvtRegionIdx,
const double* p,
const double* z,
double* output_R,
double* output_dRdp) const
{
isothermalPvt_->dRdp(n, pvtRegionIdx, p, z, output_R, output_dRdp);
}
private:
int getPvtRegionIndex_(const int* pvtRegionIdx, int cellIdx) const
{
if (!pvtRegionIdx)
return 0;
return pvtRegionIdx[cellIdx];
}
// the PVT propertied for the isothermal case
std::shared_ptr<const PvtInterface> isothermalPvt_;
// The PVT properties needed for temperature dependence of the viscosity. We need
// to store one value per PVT region.
std::vector<double> viscrefPress_;
std::vector<double> viscrefRs_;
std::vector<double> muRef_;
const TableContainer* oilvisctTables_;
// The PVT properties needed for temperature dependence of the density. This is
// specified as one value per EOS in the manual, but we unconditionally use the
// expansion coefficient of the first EOS...
int oilCompIdx_;
double tref_;
double pref_;
double cref_;
double thermex1_;
};
}
#endif