opm-simulators/opm/autodiff/NewtonIterationBlackoilInterleaved.cpp
Atgeirr Flø Rasmussen 7489f15ee9 Add sequential models for black oil.
This commit adds sequential solvers, including a simulator variant
using them (flow_sequential.cpp) with an integration test (running
SPE1, same as for fully implicit).

The sequential code is capable of running several (but not all) test
cases without tuning or special parameters, but reducing ds_max a bit
(from default 0.2 to say 0.1) helps with transport solver
convergence. The Norne model runs fine (esp. with a little tuning). A
parameter iterate_to_fully_implicit (defaults to false) is available,
when set the simulator will iterate with alternating pressure and
transport solves towards the fully implicit solution. Although that
takes a lot extra time it serves as a correctness check.

Performance is not competitive with fully implicit at this point:
essentially both the pressure and transport models inherit the fully
implicit model and do a lot of double (or triple) work. The point has
been to establish a proof of concept and baseline for further
experiments, without disturbing the base model too much (or at all, if
possible).

Changes to existing code has been minimized by merging most such
changes as smaller PRs already, the only remaining such change is to
NewtonIterationBlackoilInterleaved. Admittedly, that code (to solve
the pressure system with AMG) is not ideal because it duplicates
similar code in CPRPreconditioner.hpp and is not parallel. I propose
to address this later by refactoring the "solve elliptic system" code
from CPRPreconditioner into a separate class that can be used also
from here
2016-06-27 10:28:09 +02:00

714 lines
28 KiB
C++

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
Copyright 2015 Statoil AS
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/DuneMatrix.hpp>
#include <opm/autodiff/AdditionalObjectDeleter.hpp>
#include <opm/autodiff/CPRPreconditioner.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
#include <opm/autodiff/NewtonIterationUtilities.hpp>
#include <opm/autodiff/ParallelRestrictedAdditiveSchwarz.hpp>
#include <opm/autodiff/ParallelOverlappingILU0.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/amg.hh>
#if HAVE_UMFPACK
#include <Eigen/UmfPackSupport>
#else
#include <Eigen/SparseLU>
#endif
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
namespace Dune
{
namespace ISTLUtility {
//! invert matrix by calling FMatrixHelp::invert
template <typename K>
static inline void invertMatrix (FieldMatrix<K,1,1> &matrix)
{
FieldMatrix<K,1,1> A ( matrix );
FMatrixHelp::invertMatrix(A, matrix );
}
//! invert matrix by calling FMatrixHelp::invert
template <typename K>
static inline void invertMatrix (FieldMatrix<K,2,2> &matrix)
{
FieldMatrix<K,2,2> A ( matrix );
FMatrixHelp::invertMatrix(A, matrix );
}
//! invert matrix by calling FMatrixHelp::invert
template <typename K>
static inline void invertMatrix (FieldMatrix<K,3,3> &matrix)
{
FieldMatrix<K,3,3> A ( matrix );
FMatrixHelp::invertMatrix(A, matrix );
}
//! invert matrix by calling matrix.invert
template <typename K, int n>
static inline void invertMatrix (FieldMatrix<K,n,n> &matrix)
{
matrix.invert();
}
} // end ISTLUtility
template <class Scalar, int n, int m>
class MatrixBlock : public Dune::FieldMatrix<Scalar, n, m>
{
public:
typedef Dune::FieldMatrix<Scalar, n, m> BaseType;
using BaseType :: operator= ;
using BaseType :: rows;
using BaseType :: cols;
explicit MatrixBlock( const Scalar scalar = 0 ) : BaseType( scalar ) {}
void invert()
{
ISTLUtility::invertMatrix( *this );
}
const BaseType& asBase() const { return static_cast< const BaseType& > (*this); }
BaseType& asBase() { return static_cast< BaseType& > (*this); }
};
template<class K, int n, int m>
void
print_row (std::ostream& s, const MatrixBlock<K,n,m>& A,
typename FieldMatrix<K,n,m>::size_type I,
typename FieldMatrix<K,n,m>::size_type J,
typename FieldMatrix<K,n,m>::size_type therow, int width,
int precision)
{
print_row(s, A.asBase(), I, J, therow, width, precision);
}
template<class K, int n, int m>
K& firstmatrixelement (MatrixBlock<K,n,m>& A)
{
return firstmatrixelement( A.asBase() );
}
template<typename Scalar, int n, int m>
struct MatrixDimension< MatrixBlock< Scalar, n, m > >
: public MatrixDimension< typename MatrixBlock< Scalar, n, m >::BaseType >
{
};
} // end namespace Dune
namespace Opm
{
namespace detail {
/**
* Simple binary operator that always returns 0.1
* It is used to get the sparsity pattern for our
* interleaved system, and is marginally faster than using
* operator+=.
*/
template<typename Scalar> struct PointOneOp {
EIGEN_EMPTY_STRUCT_CTOR(PointOneOp)
Scalar operator()(const Scalar&, const Scalar&) const { return 0.1; }
};
}
/// This class solves the fully implicit black-oil system by
/// solving the reduced system (after eliminating well variables)
/// as a block-structured matrix (one block for all cell variables) for a fixed
/// number of cell variables np .
template <int np, class ScalarT = double >
class NewtonIterationBlackoilInterleavedImpl : public NewtonIterationBlackoilInterface
{
typedef ScalarT Scalar;
typedef Dune::FieldVector<Scalar, np > VectorBlockType;
typedef Dune::MatrixBlock<Scalar, np, np > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> Vector;
public:
typedef NewtonIterationBlackoilInterface :: SolutionVector SolutionVector;
/// Construct a system solver.
/// \param[in] param parameters controlling the behaviour of the linear solvers
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
NewtonIterationBlackoilInterleavedImpl(const NewtonIterationBlackoilInterleavedParameters& param,
const boost::any& parallelInformation_arg=boost::any())
: iterations_( 0 ),
parallelInformation_(parallelInformation_arg),
parameters_( param )
{
}
/// Solve the system of linear equations Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
/// \copydoc NewtonIterationBlackoilInterface::iterations
int iterations () const { return iterations_; }
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
const boost::any& parallelInformation() const { return parallelInformation_; }
public:
/// \brief construct the CPR preconditioner and the solver.
/// \tparam P The type of the parallel information.
/// \param parallelInformation the information about the parallelization.
template<int category=Dune::SolverCategory::sequential, class O, class POrComm>
void constructPreconditionerAndSolve(O& opA,
Vector& x, Vector& istlb,
const POrComm& parallelInformation_arg,
Dune::InverseOperatorResult& result) const
{
// Construct scalar product.
typedef Dune::ScalarProductChooser<Vector, POrComm, category> ScalarProductChooser;
typedef std::unique_ptr<typename ScalarProductChooser::ScalarProduct> SPPointer;
SPPointer sp(ScalarProductChooser::construct(parallelInformation_arg));
// Communicate if parallel.
parallelInformation_arg.copyOwnerToAll(istlb, istlb);
#if ! HAVE_UMFPACK
const bool useAmg = false ;
if( useAmg )
{
typedef ISTLUtility::CPRSelector< Mat, Vector, Vector, POrComm> CPRSelectorType;
typedef typename CPRSelectorType::AMG AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
constructAMGPrecond(opA, parallelInformation_arg, amg);
// Solve.
solve(opA, x, istlb, *sp, *amg, result);
}
else
#endif
{
// Construct preconditioner.
auto precond = constructPrecond(opA, parallelInformation_arg);
// Solve.
solve(opA, x, istlb, *sp, *precond, result);
}
}
typedef Dune::SeqILU0<Mat, Vector, Vector> SeqPreconditioner;
template <class Operator>
std::unique_ptr<SeqPreconditioner> constructPrecond(Operator& opA, const Dune::Amg::SequentialInformation&) const
{
const double relax = 0.9;
std::unique_ptr<SeqPreconditioner> precond(new SeqPreconditioner(opA.getmat(), relax));
return precond;
}
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int, int> Comm;
typedef ParallelOverlappingILU0<Mat,Vector,Vector,Comm> ParPreconditioner;
template <class Operator>
std::unique_ptr<ParPreconditioner>
constructPrecond(Operator& opA, const Comm& comm) const
{
typedef std::unique_ptr<ParPreconditioner> Pointer;
const double relax = 0.9;
return Pointer(new ParPreconditioner(opA.getmat(), comm, relax));
}
#endif
template <class Operator, class POrComm, class AMG >
void
constructAMGPrecond(Operator& opA, const POrComm& comm, std::unique_ptr< AMG >& amg ) const
{
const double relax = 1.0;
ISTLUtility::createAMGPreconditionerPointer( opA, relax, comm, amg );
}
/// \brief Solve the system using the given preconditioner and scalar product.
template <class Operator, class ScalarProd, class Precond>
void solve(Operator& opA, Vector& x, Vector& istlb, ScalarProd& sp, Precond& precond, Dune::InverseOperatorResult& result) const
{
// TODO: Revise when linear solvers interface opm-core is done
// Construct linear solver.
// GMRes solver
if ( parameters_.newton_use_gmres_ ) {
Dune::RestartedGMResSolver<Vector> linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_restart_,
parameters_.linear_solver_maxiter_,
parameters_.linear_solver_verbosity_);
// Solve system.
linsolve.apply(x, istlb, result);
}
else { // BiCGstab solver
Dune::BiCGSTABSolver<Vector> linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_maxiter_,
parameters_.linear_solver_verbosity_);
// Solve system.
linsolve.apply(x, istlb, result);
}
}
void formInterleavedSystem(const std::vector<LinearisedBlackoilResidual::ADB>& eqs,
Mat& istlA) const
{
assert( np == int(eqs.size()) );
// Find sparsity structure as union of basic block sparsity structures,
// corresponding to the jacobians with respect to pressure.
// Use our custom PointOneOp to get to the union structure.
// As default we only iterate over the pressure derivatives.
Eigen::SparseMatrix<double, Eigen::ColMajor> col_major = eqs[0].derivative()[0].getSparse();
detail::PointOneOp<double> point_one;
for (int phase = 1; phase < np; ++phase) {
const AutoDiffMatrix::SparseRep& mat = eqs[phase].derivative()[0].getSparse();
col_major = col_major.binaryExpr(mat, point_one);
}
// For some cases (for instance involving Solvent flow) the reasoning for only adding
// the pressure derivatives fails. As getting the sparsity pattern is non-trivial, in terms
// of work, the full sparsity pattern is only added when required.
if (parameters_.require_full_sparsity_pattern_) {
for (int p1 = 0; p1 < np; ++p1) {
for (int p2 = 1; p2 < np; ++p2) { // pressure is already added
const AutoDiffMatrix::SparseRep& mat = eqs[p1].derivative()[p2].getSparse();
col_major = col_major.binaryExpr(mat, point_one);
}
}
}
// Automatically convert the column major structure to a row-major structure
Eigen::SparseMatrix<double, Eigen::RowMajor> row_major = col_major;
const int size = row_major.rows();
assert(size == row_major.cols());
{
// Create ISTL matrix with interleaved rows and columns (block structured).
istlA.setSize(row_major.rows(), row_major.cols(), row_major.nonZeros());
istlA.setBuildMode(Mat::row_wise);
const int* ia = row_major.outerIndexPtr();
const int* ja = row_major.innerIndexPtr();
const typename Mat::CreateIterator endrow = istlA.createend();
for (typename Mat::CreateIterator row = istlA.createbegin(); row != endrow; ++row) {
const int ri = row.index();
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
row.insert(ja[i]);
}
}
}
/*
// not neeeded since MatrixBlock initially zeros all elements during construction
// Set all blocks to zero.
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
*col = 0.0;
}
}
*/
/**
* Go through all jacobians, and insert in correct spot
*
* The straight forward way to do this would be to run through each
* element in the output matrix, and set all block entries by gathering
* from all "input matrices" (derivatives).
*
* A faster alternative is to instead run through each "input matrix" and
* insert its elements in the correct spot in the output matrix.
*
*/
for (int p1 = 0; p1 < np; ++p1) {
for (int p2 = 0; p2 < np; ++p2) {
// Note that that since these are CSC and not CSR matrices,
// ja contains row numbers instead of column numbers.
const AutoDiffMatrix::SparseRep& s = eqs[p1].derivative()[p2].getSparse();
const int* ia = s.outerIndexPtr();
const int* ja = s.innerIndexPtr();
const double* sa = s.valuePtr();
for (int col = 0; col < size; ++col) {
for (int elem_ix = ia[col]; elem_ix < ia[col + 1]; ++elem_ix) {
const int row = ja[elem_ix];
istlA[row][col][p1][p2] = sa[elem_ix];
}
}
}
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
typedef LinearisedBlackoilResidual::ADB ADB;
typedef ADB::V V;
// Build the vector of equations.
//const int np = residual.material_balance_eq.size();
assert( np == int(residual.material_balance_eq.size()) );
std::vector<ADB> eqs;
eqs.reserve(np + 2);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
// check if wells are present
const bool hasWells = residual.well_flux_eq.size() > 0 ;
std::vector<ADB> elim_eqs;
if( hasWells )
{
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
// Eliminate the well-related unknowns, and corresponding equations.
elim_eqs.reserve(2);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
// Scale material balance equations.
for (int phase = 0; phase < np; ++phase) {
eqs[phase] = eqs[phase] * residual.matbalscale[phase];
}
// calculating the size for b
int size_b = 0;
for (int elem = 0; elem < np; ++elem) {
const int loc_size = eqs[elem].size();
size_b += loc_size;
}
V b(size_b);
int pos = 0;
for (int elem = 0; elem < np; ++elem) {
const int loc_size = eqs[elem].size();
b.segment(pos, loc_size) = eqs[elem].value();
pos += loc_size;
}
assert(pos == size_b);
// Create ISTL matrix with interleaved rows and columns (block structured).
Mat istlA;
formInterleavedSystem(eqs, istlA);
// Solve reduced system.
SolutionVector dx(SolutionVector::Zero(b.size()));
// Right hand side.
const int size = istlA.N();
Vector istlb(size);
for (int i = 0; i < size; ++i) {
for( int p = 0, idx = i; p<np; ++p, idx += size ) {
istlb[i][p] = b(idx);
}
}
// System solution
Vector x(istlA.M());
x = 0.0;
Dune::InverseOperatorResult result;
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
typedef Dune::OwnerOverlapCopyCommunication<int,int> Comm;
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
Comm istlComm(info.communicator());
// As we use a dune-istl with block size np the number of components
// per parallel is only one.
info.copyValuesTo(istlComm.indexSet(), istlComm.remoteIndices(),
size, 1);
// Construct operator, scalar product and vectors needed.
typedef Dune::OverlappingSchwarzOperator<Mat,Vector,Vector,Comm> Operator;
Operator opA(istlA, istlComm);
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, x, istlb, istlComm, result);
}
else
#endif
{
// Construct operator, scalar product and vectors needed.
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
Operator opA(istlA);
Dune::Amg::SequentialInformation info;
constructPreconditionerAndSolve(opA, x, istlb, info, result);
}
// store number of iterations
iterations_ = result.iterations;
// Check for failure of linear solver.
if (!parameters_.ignoreConvergenceFailure_ && !result.converged) {
OPM_THROW(LinearSolverProblem, "Convergence failure for linear solver.");
}
// Copy solver output to dx.
for (int i = 0; i < size; ++i) {
for( int p=0, idx = i; p<np; ++p, idx += size ) {
dx(idx) = x[i][p];
}
}
if ( hasWells ) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return dx;
}
protected:
mutable int iterations_;
boost::any parallelInformation_;
NewtonIterationBlackoilInterleavedParameters parameters_;
}; // end NewtonIterationBlackoilInterleavedImpl
/// Construct a system solver.
NewtonIterationBlackoilInterleaved::NewtonIterationBlackoilInterleaved(const parameter::ParameterGroup& param,
const boost::any& parallelInformation_arg)
: newtonIncrementDoublePrecision_(),
newtonIncrementSinglePrecision_(),
parameters_( param ),
parallelInformation_(parallelInformation_arg),
iterations_( 0 )
{
}
namespace detail {
template< int NP, class Scalar >
struct NewtonIncrement
{
template <class NewtonIncVector>
static const NewtonIterationBlackoilInterface&
get( NewtonIncVector& newtonIncrements,
const NewtonIterationBlackoilInterleavedParameters& param,
const boost::any& parallelInformation,
const int np )
{
if( np == NP )
{
assert( np < int(newtonIncrements.size()) );
// create NewtonIncrement with fixed np
if( ! newtonIncrements[ NP ] )
newtonIncrements[ NP ].reset( new NewtonIterationBlackoilInterleavedImpl< NP, Scalar >( param, parallelInformation ) );
return *(newtonIncrements[ NP ]);
}
else
{
return NewtonIncrement< NP-1, Scalar >::get(newtonIncrements, param, parallelInformation, np );
}
}
};
template<class Scalar>
struct NewtonIncrement< 0, Scalar >
{
template <class NewtonIncVector>
static const NewtonIterationBlackoilInterface&
get( NewtonIncVector&,
const NewtonIterationBlackoilInterleavedParameters&,
const boost::any&,
const int np )
{
OPM_THROW(std::runtime_error,"NewtonIncrement::get: number of variables not supported yet. Adjust maxNumberEquations appropriately to cover np = " << np);
}
};
std::pair<NewtonIterationBlackoilInterleaved::SolutionVector, Dune::InverseOperatorResult>
computePressureIncrement(const LinearisedBlackoilResidual& residual)
{
typedef LinearisedBlackoilResidual::ADB ADB;
typedef ADB::V V;
// Build the vector of equations (should be just a single material balance equation
// in which the pressure equation is stored).
const int np = residual.material_balance_eq.size();
assert(np == 1);
std::vector<ADB> eqs;
eqs.reserve(np + 2);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
// Check if wells are present.
const bool hasWells = residual.well_flux_eq.size() > 0 ;
std::vector<ADB> elim_eqs;
if (hasWells) {
// Eliminate the well-related unknowns, and corresponding equations.
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
elim_eqs.reserve(2);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
// Solve the linearised oil equation.
Eigen::SparseMatrix<double, Eigen::RowMajor> eigenA = eqs[0].derivative()[0].getSparse();
DuneMatrix opA(eigenA);
const int size = eqs[0].size();
typedef Dune::BlockVector<Dune::FieldVector<double, 1> > Vector1;
Vector1 x;
x.resize(size);
x = 0.0;
Vector1 b;
b.resize(size);
b = 0.0;
std::copy_n(eqs[0].value().data(), size, b.begin());
// Solve with AMG solver.
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double, 1, 1> > Mat;
typedef Dune::MatrixAdapter<Mat, Vector1, Vector1> Operator;
Operator sOpA(opA);
typedef Dune::Amg::SequentialInformation ParallelInformation;
typedef Dune::SeqILU0<Mat,Vector1,Vector1> EllipticPreconditioner;
typedef EllipticPreconditioner Smoother;
typedef Dune::Amg::AMG<Operator, Vector1, Smoother, ParallelInformation> AMG;
typedef Dune::Amg::FirstDiagonal CouplingMetric;
typedef Dune::Amg::SymmetricCriterion<Mat, CouplingMetric> CritBase;
typedef Dune::Amg::CoarsenCriterion<CritBase> Criterion;
// TODO: revise choice of parameters
const int coarsenTarget = 1200;
Criterion criterion(15, coarsenTarget);
criterion.setDebugLevel(0); // no debug information, 1 for printing hierarchy information
criterion.setDefaultValuesIsotropic(2);
criterion.setNoPostSmoothSteps(1);
criterion.setNoPreSmoothSteps(1);
// for DUNE 2.2 we also need to pass the smoother args
typedef typename AMG::Smoother Smoother;
typedef typename Dune::Amg::SmootherTraits<Smoother>::Arguments SmootherArgs;
SmootherArgs smootherArgs;
smootherArgs.iterations = 1;
smootherArgs.relaxationFactor = 1.0;
AMG precond(sOpA, criterion, smootherArgs);
const int verbosity = 0;
const int maxit = 30;
const double tolerance = 1e-5;
// Construct linear solver.
Dune::BiCGSTABSolver<Vector1> linsolve(sOpA, precond, tolerance, maxit, verbosity);
// Solve system.
Dune::InverseOperatorResult result;
linsolve.apply(x, b, result);
// Check for failure of linear solver.
if (!result.converged) {
OPM_THROW(LinearSolverProblem, "Convergence failure for linear solver in computePressureIncrement().");
}
// Copy solver output to dx.
NewtonIterationBlackoilInterleaved::SolutionVector dx(size);
for (int i = 0; i < size; ++i) {
dx(i) = x[i];
}
if (hasWells) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return std::make_pair(dx, result);
}
} // end namespace detail
NewtonIterationBlackoilInterleaved::SolutionVector
NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
{
// get np and call appropriate template method
const int np = residual.material_balance_eq.size();
if (np == 1) {
auto result = detail::computePressureIncrement(residual);
iterations_ = result.second.iterations;
return result.first;
}
const NewtonIterationBlackoilInterface& newtonIncrement = residual.singlePrecision ?
detail::NewtonIncrement< maxNumberEquations_, float > :: get( newtonIncrementSinglePrecision_, parameters_, parallelInformation_, np ) :
detail::NewtonIncrement< maxNumberEquations_, double > :: get( newtonIncrementDoublePrecision_, parameters_, parallelInformation_, np );
// compute newton increment
SolutionVector dx = newtonIncrement.computeNewtonIncrement( residual );
// get number of linear iterations
iterations_ = newtonIncrement.iterations();
return std::move(dx);
}
const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const
{
return parallelInformation_;
}
} // namespace Opm