mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-19 16:22:57 -06:00
1041 lines
45 KiB
C++
1041 lines
45 KiB
C++
/*
|
|
Copyright 2016 IRIS AS
|
|
Copyright 2019 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
|
|
#define OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/linalg/WellOperators.hpp>
|
|
#include <opm/simulators/linalg/MatrixBlock.hpp>
|
|
#include <opm/simulators/linalg/BlackoilAmg.hpp>
|
|
#include <opm/simulators/linalg/CPRPreconditioner.hpp>
|
|
#include <opm/simulators/linalg/getQuasiImpesWeights.hpp>
|
|
#include <opm/simulators/linalg/ParallelRestrictedAdditiveSchwarz.hpp>
|
|
#include <opm/simulators/linalg/ParallelOverlappingILU0.hpp>
|
|
#include <opm/simulators/linalg/ExtractParallelGridInformationToISTL.hpp>
|
|
#include <opm/simulators/linalg/findOverlapRowsAndColumns.hpp>
|
|
#include <opm/simulators/linalg/setupPropertyTree.hpp>
|
|
#include <opm/simulators/linalg/FlexibleSolver.hpp>
|
|
#include <opm/simulators/linalg/WriteSystemMatrixHelper.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/simulators/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
|
|
|
|
#include <opm/models/utils/parametersystem.hh>
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
|
|
#include <dune/istl/scalarproducts.hh>
|
|
#include <dune/istl/operators.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
#include <dune/istl/solvers.hh>
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/istl/paamg/amg.hh>
|
|
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
#if HAVE_CUDA || HAVE_OPENCL
|
|
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
|
|
#endif
|
|
|
|
namespace Opm::Properties {
|
|
|
|
NEW_TYPE_TAG(FlowIstlSolver, INHERITS_FROM(FlowIstlSolverParams));
|
|
|
|
template <class TypeTag, class MyTypeTag>
|
|
struct EclWellModel;
|
|
|
|
//! Set the type of a global jacobian matrix for linear solvers that are based on
|
|
//! dune-istl.
|
|
SET_PROP(FlowIstlSolver, SparseMatrixAdapter)
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
|
|
typedef Opm::MatrixBlock<Scalar, numEq, numEq> Block;
|
|
|
|
public:
|
|
typedef typename Opm::Linear::IstlSparseMatrixAdapter<Block> type;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm
|
|
{
|
|
template <class DenseMatrix>
|
|
DenseMatrix transposeDenseMatrix(const DenseMatrix& M)
|
|
{
|
|
DenseMatrix tmp;
|
|
for (int i = 0; i < M.rows; ++i)
|
|
for (int j = 0; j < M.cols; ++j)
|
|
tmp[j][i] = M[i][j];
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/// This class solves the fully implicit black-oil system by
|
|
/// solving the reduced system (after eliminating well variables)
|
|
/// as a block-structured matrix (one block for all cell variables) for a fixed
|
|
/// number of cell variables np .
|
|
template <class TypeTag>
|
|
class ISTLSolverEbos
|
|
{
|
|
protected:
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
using Vector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using WellModel = GetPropType<TypeTag, Properties::EclWellModel>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
typedef typename SparseMatrixAdapter::IstlMatrix Matrix;
|
|
|
|
typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlockType;
|
|
typedef typename Vector::block_type BlockVector;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
|
typedef typename GridView::template Codim<0>::Entity Element;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FlexibleSolverType = Dune::FlexibleSolver<Matrix, Vector>;
|
|
using AbstractOperatorType = Dune::AssembledLinearOperator<Matrix, Vector, Vector>;
|
|
using WellModelOperator = WellModelAsLinearOperator<WellModel, Vector, Vector>;
|
|
// Due to miscibility oil <-> gas the water eqn is the one we can replace with a pressure equation.
|
|
static const bool waterEnabled = Indices::waterEnabled;
|
|
static const int pindex = (waterEnabled) ? BlackOilDefaultIndexTraits::waterCompIdx : BlackOilDefaultIndexTraits::oilCompIdx;
|
|
enum { pressureEqnIndex = pindex };
|
|
enum { pressureVarIndex = Indices::pressureSwitchIdx };
|
|
static const int numEq = Indices::numEq;
|
|
|
|
#if HAVE_CUDA || HAVE_OPENCL
|
|
static const unsigned int block_size = Matrix::block_type::rows;
|
|
std::unique_ptr<BdaBridge<Matrix, Vector, block_size>> bdaBridge;
|
|
#endif
|
|
|
|
#if HAVE_MPI
|
|
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
|
|
#else
|
|
typedef Dune::CollectiveCommunication< int > communication_type;
|
|
#endif
|
|
|
|
public:
|
|
typedef Dune::AssembledLinearOperator< Matrix, Vector, Vector > AssembledLinearOperatorType;
|
|
|
|
static void registerParameters()
|
|
{
|
|
FlowLinearSolverParameters::registerParameters<TypeTag>();
|
|
}
|
|
|
|
/// Construct a system solver.
|
|
/// \param[in] parallelInformation In the case of a parallel run
|
|
/// with dune-istl the information about the parallelization.
|
|
ISTLSolverEbos(const Simulator& simulator)
|
|
: simulator_(simulator),
|
|
iterations_( 0 ),
|
|
converged_(false),
|
|
matrix_()
|
|
{
|
|
#if HAVE_MPI
|
|
comm_.reset( new communication_type( simulator_.vanguard().grid().comm() ) );
|
|
#endif
|
|
parameters_.template init<TypeTag>();
|
|
useFlexible_ = parameters_.use_cpr_ || EWOMS_PARAM_IS_SET(TypeTag, std::string, LinearSolverConfiguration);
|
|
|
|
if (useFlexible_)
|
|
{
|
|
prm_ = setupPropertyTree<TypeTag>(parameters_);
|
|
}
|
|
const auto& gridForConn = simulator_.vanguard().grid();
|
|
#if HAVE_CUDA || HAVE_OPENCL
|
|
std::string gpu_mode = EWOMS_GET_PARAM(TypeTag, std::string, GpuMode);
|
|
int platformID = EWOMS_GET_PARAM(TypeTag, int, OpenclPlatformId);
|
|
int deviceID = EWOMS_GET_PARAM(TypeTag, int, BdaDeviceId);
|
|
if (gridForConn.comm().size() > 1 && gpu_mode.compare("none") != 0) {
|
|
OpmLog::warning("Warning cannot use GPU with MPI, GPU is disabled");
|
|
gpu_mode = "none";
|
|
}
|
|
const int maxit = EWOMS_GET_PARAM(TypeTag, int, LinearSolverMaxIter);
|
|
const double tolerance = EWOMS_GET_PARAM(TypeTag, double, LinearSolverReduction);
|
|
const int linear_solver_verbosity = parameters_.linear_solver_verbosity_;
|
|
bdaBridge.reset(new BdaBridge<Matrix, Vector, block_size>(gpu_mode, linear_solver_verbosity, maxit, tolerance, platformID, deviceID));
|
|
#else
|
|
const std::string gpu_mode = EWOMS_GET_PARAM(TypeTag, std::string, GpuMode);
|
|
if (gpu_mode.compare("none") != 0) {
|
|
OPM_THROW(std::logic_error,"Error cannot use GPU solver since neither CUDA nor OpenCL was not found by cmake");
|
|
}
|
|
#endif
|
|
extractParallelGridInformationToISTL(simulator_.vanguard().grid(), parallelInformation_);
|
|
useWellConn_ = EWOMS_GET_PARAM(TypeTag, bool, MatrixAddWellContributions);
|
|
ownersFirst_ = EWOMS_GET_PARAM(TypeTag, bool, OwnerCellsFirst);
|
|
interiorCellNum_ = detail::numMatrixRowsToUseInSolver(simulator_.vanguard().grid(), ownersFirst_);
|
|
|
|
if ( isParallel() && (!ownersFirst_ || parameters_.linear_solver_use_amg_) ) {
|
|
detail::setWellConnections(gridForConn, simulator_.vanguard().schedule().getWellsatEnd(), useWellConn_, wellConnectionsGraph_);
|
|
// For some reason simulator_.model().elementMapper() is not initialized at this stage
|
|
// Hence const auto& elemMapper = simulator_.model().elementMapper(); does not work.
|
|
// Set it up manually
|
|
using ElementMapper =
|
|
Dune::MultipleCodimMultipleGeomTypeMapper<GridView>;
|
|
ElementMapper elemMapper(simulator_.vanguard().gridView(), Dune::mcmgElementLayout());
|
|
detail::findOverlapAndInterior(gridForConn, elemMapper, overlapRows_, interiorRows_);
|
|
noGhostAdjacency();
|
|
setGhostsInNoGhost(*noGhostMat_);
|
|
if (ownersFirst_)
|
|
OpmLog::warning("OwnerCellsFirst option is true, but ignored.");
|
|
}
|
|
|
|
if (useFlexible_)
|
|
{
|
|
// Print parameters to PRT/DBG logs.
|
|
if (simulator.gridView().comm().rank() == 0) {
|
|
std::ostringstream os;
|
|
os << "Property tree for linear solver:\n";
|
|
boost::property_tree::write_json(os, prm_, true);
|
|
OpmLog::note(os.str());
|
|
}
|
|
}
|
|
}
|
|
|
|
// nothing to clean here
|
|
void eraseMatrix() {
|
|
}
|
|
|
|
void prepare(const SparseMatrixAdapter& M, Vector& b)
|
|
{
|
|
static bool firstcall = true;
|
|
#if HAVE_MPI
|
|
if (firstcall && parallelInformation_.type() == typeid(ParallelISTLInformation)) {
|
|
// Parallel case.
|
|
const ParallelISTLInformation* parinfo = std::any_cast<ParallelISTLInformation>(¶llelInformation_);
|
|
assert(parinfo);
|
|
const size_t size = M.istlMatrix().N();
|
|
parinfo->copyValuesTo(comm_->indexSet(), comm_->remoteIndices(), size, 1);
|
|
}
|
|
#endif
|
|
|
|
// update matrix entries for solvers.
|
|
if (noGhostMat_)
|
|
{
|
|
copyJacToNoGhost(M.istlMatrix(), *noGhostMat_);
|
|
}
|
|
else
|
|
{
|
|
if (firstcall)
|
|
{
|
|
// ebos will not change the matrix object. Hence simply store a pointer
|
|
// to the original one with a deleter that does nothing.
|
|
// Outch! We need to be able to scale the linear system! Hence const_cast
|
|
matrix_ = const_cast<Matrix*>(&M.istlMatrix());
|
|
}
|
|
else
|
|
{
|
|
// Pointers should not change
|
|
if ( &(M.istlMatrix()) != matrix_ )
|
|
{
|
|
OPM_THROW(std::logic_error, "Matrix objects are expected to be reused when reassembling!"
|
|
<<" old pointer was " << matrix_ << ", new one is " << (&M.istlMatrix()) );
|
|
}
|
|
}
|
|
}
|
|
rhs_ = &b;
|
|
|
|
if (useFlexible_)
|
|
{
|
|
prepareFlexibleSolver();
|
|
}
|
|
else
|
|
{
|
|
this->scaleSystem();
|
|
}
|
|
firstcall = false;
|
|
}
|
|
|
|
void scaleSystem()
|
|
{
|
|
if (useWellConn_) {
|
|
bool form_cpr = true;
|
|
if (parameters_.system_strategy_ == "quasiimpes") {
|
|
weights_ = getQuasiImpesWeights();
|
|
} else if (parameters_.system_strategy_ == "trueimpes") {
|
|
weights_ = getStorageWeights();
|
|
} else if (parameters_.system_strategy_ == "simple") {
|
|
BlockVector bvec(1.0);
|
|
weights_ = getSimpleWeights(bvec);
|
|
} else if (parameters_.system_strategy_ == "original") {
|
|
BlockVector bvec(0.0);
|
|
bvec[pressureEqnIndex] = 1;
|
|
weights_ = getSimpleWeights(bvec);
|
|
} else {
|
|
if (parameters_.system_strategy_ != "none") {
|
|
OpmLog::warning("unknown_system_strategy", "Unknown linear solver system strategy: '" + parameters_.system_strategy_ + "', applying 'none' strategy.");
|
|
}
|
|
form_cpr = false;
|
|
}
|
|
if (parameters_.scale_linear_system_) {
|
|
// also scale weights
|
|
this->scaleEquationsAndVariables(weights_);
|
|
}
|
|
if (form_cpr && !(parameters_.cpr_use_drs_)) {
|
|
scaleMatrixAndRhs(weights_);
|
|
}
|
|
if (weights_.size() == 0) {
|
|
// if weights are not set cpr_use_drs_=false;
|
|
parameters_.cpr_use_drs_ = false;
|
|
}
|
|
} else {
|
|
if (parameters_.use_cpr_ && parameters_.cpr_use_drs_) {
|
|
OpmLog::warning("DRS_DISABLE", "Disabling DRS as matrix does not contain well contributions");
|
|
}
|
|
parameters_.cpr_use_drs_ = false;
|
|
if (parameters_.scale_linear_system_) {
|
|
// also scale weights
|
|
this->scaleEquationsAndVariables(weights_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void setResidual(Vector& /* b */) {
|
|
// rhs_ = &b; // Must be handled in prepare() instead.
|
|
}
|
|
|
|
void getResidual(Vector& b) const {
|
|
b = *rhs_;
|
|
}
|
|
|
|
void setMatrix(const SparseMatrixAdapter& /* M */) {
|
|
// matrix_ = &M.istlMatrix(); // Must be handled in prepare() instead.
|
|
}
|
|
|
|
bool solve(Vector& x) {
|
|
const int verbosity = useFlexible_ ? prm_.get<int>("verbosity", 0) : parameters_.linear_solver_verbosity_;
|
|
const bool write_matrix = verbosity > 10;
|
|
// Solve system.
|
|
|
|
if (useFlexible_)
|
|
{
|
|
Dune::InverseOperatorResult res;
|
|
assert(flexibleSolver_);
|
|
flexibleSolver_->apply(x, *rhs_, res);
|
|
iterations_ = res.iterations;
|
|
if (write_matrix) {
|
|
Opm::Helper::writeSystem(simulator_, //simulator is only used to get names
|
|
getMatrix(),
|
|
*rhs_,
|
|
comm_.get());
|
|
}
|
|
|
|
return converged_ = res.converged;
|
|
}
|
|
|
|
const WellModel& wellModel = simulator_.problem().wellModel();
|
|
const WellModelAsLinearOperator<WellModel, Vector, Vector> wellOp(wellModel);
|
|
|
|
if( isParallel() )
|
|
{
|
|
if ( ownersFirst_ && !parameters_.linear_solver_use_amg_ && !useFlexible_) {
|
|
typedef WellModelGhostLastMatrixAdapter< Matrix, Vector, Vector, true > Operator;
|
|
assert(matrix_);
|
|
Operator opA(getMatrix(), wellOp, interiorCellNum_);
|
|
solve( opA, x, *rhs_, *comm_ );
|
|
}
|
|
else {
|
|
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, true > Operator;
|
|
assert (noGhostMat_);
|
|
Operator opA(getMatrix(), wellOp, comm_ );
|
|
solve( opA, x, *rhs_, *comm_ );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, false > Operator;
|
|
Operator opA(getMatrix(), wellOp);
|
|
solve( opA, x, *rhs_ );
|
|
}
|
|
|
|
if (parameters_.scale_linear_system_) {
|
|
scaleSolution(x);
|
|
}
|
|
|
|
if (write_matrix) {
|
|
Opm::Helper::writeSystem(simulator_, //simulator is only used to get names
|
|
getMatrix(),
|
|
*rhs_,
|
|
comm_.get());
|
|
}
|
|
|
|
return converged_;
|
|
}
|
|
|
|
|
|
/// Solve the system of linear equations Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
|
|
/// \copydoc NewtonIterationBlackoilInterface::iterations
|
|
int iterations () const { return iterations_; }
|
|
|
|
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
|
|
const std::any& parallelInformation() const { return parallelInformation_; }
|
|
|
|
protected:
|
|
/// \brief construct the CPR preconditioner and the solver.
|
|
/// \tparam P The type of the parallel information.
|
|
/// \param parallelInformation the information about the parallelization.
|
|
template<Dune::SolverCategory::Category category=Dune::SolverCategory::sequential,
|
|
class LinearOperator, class POrComm>
|
|
void constructPreconditionerAndSolve(LinearOperator& linearOperator,
|
|
Vector& x, Vector& istlb,
|
|
const POrComm& parallelInformation_arg,
|
|
Dune::InverseOperatorResult& result) const
|
|
{
|
|
// Construct scalar product.
|
|
auto sp = Dune::createScalarProduct<Vector,POrComm>(parallelInformation_arg, category);
|
|
|
|
#if FLOW_SUPPORT_AMG // activate AMG if either flow_ebos is used or UMFPack is not available
|
|
if( parameters_.linear_solver_use_amg_ || parameters_.use_cpr_)
|
|
{
|
|
typedef ISTLUtility::CPRSelector< Matrix, Vector, Vector, POrComm> CPRSelectorType;
|
|
typedef typename CPRSelectorType::Operator MatrixOperator;
|
|
|
|
std::unique_ptr< MatrixOperator > opA;
|
|
|
|
if( ! std::is_same< LinearOperator, MatrixOperator > :: value )
|
|
{
|
|
// create new operator in case linear operator and matrix operator differ
|
|
opA.reset( CPRSelectorType::makeOperator( linearOperator.getmat(), parallelInformation_arg ) );
|
|
}
|
|
|
|
const double relax = parameters_.ilu_relaxation_;
|
|
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
|
|
if ( parameters_.use_cpr_ )
|
|
{
|
|
using MatrixType = typename MatrixOperator::matrix_type;
|
|
using CouplingMetric = Opm::Amg::Element<pressureEqnIndex, pressureVarIndex>;
|
|
using CritBase = Dune::Amg::SymmetricCriterion<MatrixType, CouplingMetric>;
|
|
using Criterion = Dune::Amg::CoarsenCriterion<CritBase>;
|
|
using AMG = typename ISTLUtility
|
|
::BlackoilAmgSelector< MatrixType, Vector, Vector,POrComm, Criterion, pressureEqnIndex, pressureVarIndex >::AMG;
|
|
|
|
std::unique_ptr< AMG > amg;
|
|
// Construct preconditioner.
|
|
Criterion crit(15, 2000);
|
|
constructAMGPrecond<Criterion>( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
|
|
|
|
// Solve.
|
|
solve(linearOperator, x, istlb, *sp, *amg, result);
|
|
}
|
|
else
|
|
{
|
|
typedef typename CPRSelectorType::AMG AMG;
|
|
std::unique_ptr< AMG > amg;
|
|
|
|
// Construct preconditioner.
|
|
constructAMGPrecond( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
|
|
|
|
// Solve.
|
|
solve(linearOperator, x, istlb, *sp, *amg, result);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// tries to solve linear system
|
|
#if HAVE_CUDA || HAVE_OPENCL
|
|
bool use_gpu = bdaBridge->getUseGpu();
|
|
if (use_gpu) {
|
|
WellContributions wellContribs;
|
|
if (!useWellConn_) {
|
|
simulator_.problem().wellModel().getWellContributions(wellContribs);
|
|
}
|
|
// Const_cast needed since the CUDA stuff overwrites values for better matrix condition..
|
|
bdaBridge->solve_system(const_cast<Matrix*>(&getMatrix()), istlb, wellContribs, result);
|
|
if (result.converged) {
|
|
// get result vector x from non-Dune backend, iff solve was successful
|
|
bdaBridge->get_result(x);
|
|
} else {
|
|
// CPU fallback
|
|
use_gpu = bdaBridge->getUseGpu(); // update value, BdaBridge might have disabled cusparseSolver
|
|
if (use_gpu) {
|
|
OpmLog::warning("cusparseSolver did not converge, now trying Dune to solve current linear system...");
|
|
}
|
|
|
|
// call Dune
|
|
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
|
|
solve(linearOperator, x, istlb, *sp, *precond, result);
|
|
}
|
|
} else { // gpu is not selected or disabled
|
|
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
|
|
solve(linearOperator, x, istlb, *sp, *precond, result);
|
|
}
|
|
#else
|
|
// Construct preconditioner.
|
|
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
|
|
|
|
// Solve.
|
|
solve(linearOperator, x, istlb, *sp, *precond, result);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
// 3x3 matrix block inversion was unstable at least 2.3 until and including
|
|
// 2.5.0. There may still be some issue with the 4x4 matrix block inversion
|
|
// we therefore still use the block inversion in OPM
|
|
typedef ParallelOverlappingILU0<Dune::BCRSMatrix<Dune::MatrixBlock<typename Matrix::field_type,
|
|
Matrix::block_type::rows,
|
|
Matrix::block_type::cols> >,
|
|
Vector, Vector> SeqPreconditioner;
|
|
|
|
|
|
template <class Operator>
|
|
std::unique_ptr<SeqPreconditioner> constructPrecond(Operator& opA, const Dune::Amg::SequentialInformation&) const
|
|
{
|
|
const double relax = parameters_.ilu_relaxation_;
|
|
const int ilu_fillin = parameters_.ilu_fillin_level_;
|
|
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
|
|
const bool ilu_redblack = parameters_.ilu_redblack_;
|
|
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
|
|
std::unique_ptr<SeqPreconditioner> precond(new SeqPreconditioner(opA.getmat(), ilu_fillin, relax, ilu_milu, ilu_redblack, ilu_reorder_spheres));
|
|
return precond;
|
|
}
|
|
|
|
#if HAVE_MPI
|
|
typedef Dune::OwnerOverlapCopyCommunication<int, int> Comm;
|
|
// 3x3 matrix block inversion was unstable from at least 2.3 until and
|
|
// including 2.5.0
|
|
typedef ParallelOverlappingILU0<Matrix,Vector,Vector,Comm> ParPreconditioner;
|
|
template <class Operator>
|
|
std::unique_ptr<ParPreconditioner>
|
|
constructPrecond(Operator& opA, const Comm& comm) const
|
|
{
|
|
typedef std::unique_ptr<ParPreconditioner> Pointer;
|
|
const double relax = parameters_.ilu_relaxation_;
|
|
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
|
|
const bool ilu_redblack = parameters_.ilu_redblack_;
|
|
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
|
|
return Pointer(new ParPreconditioner(opA.getmat(), comm, relax, ilu_milu, interiorCellNum_, ilu_redblack, ilu_reorder_spheres));
|
|
}
|
|
#endif
|
|
|
|
template <class LinearOperator, class MatrixOperator, class POrComm, class AMG >
|
|
void
|
|
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax, const MILU_VARIANT milu) const
|
|
{
|
|
ISTLUtility::template createAMGPreconditionerPointer<pressureEqnIndex, pressureVarIndex>( *opA, relax, milu, comm, amg );
|
|
}
|
|
|
|
|
|
template <class C, class LinearOperator, class MatrixOperator, class POrComm, class AMG >
|
|
void
|
|
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax,
|
|
const MILU_VARIANT /* milu */ ) const
|
|
{
|
|
ISTLUtility::template createAMGPreconditionerPointer<C>( *opA, relax,
|
|
comm, amg, parameters_, weights_ );
|
|
}
|
|
|
|
|
|
/// \brief Solve the system using the given preconditioner and scalar product.
|
|
template <class Operator, class ScalarProd, class Precond>
|
|
void solve(Operator& opA, Vector& x, Vector& istlb, ScalarProd& sp, Precond& precond, Dune::InverseOperatorResult& result) const
|
|
{
|
|
// TODO: Revise when linear solvers interface opm-core is done
|
|
// Construct linear solver.
|
|
// GMRes solver
|
|
int verbosity = 0;
|
|
if (simulator_.gridView().comm().rank() == 0)
|
|
verbosity = parameters_.linear_solver_verbosity_;
|
|
|
|
if ( parameters_.newton_use_gmres_ ) {
|
|
Dune::RestartedGMResSolver<Vector> linsolve(opA, sp, precond,
|
|
parameters_.linear_solver_reduction_,
|
|
parameters_.linear_solver_restart_,
|
|
parameters_.linear_solver_maxiter_,
|
|
verbosity);
|
|
// Solve system.
|
|
linsolve.apply(x, istlb, result);
|
|
}
|
|
else { // BiCGstab solver
|
|
Dune::BiCGSTABSolver<Vector> linsolve(opA, sp, precond,
|
|
parameters_.linear_solver_reduction_,
|
|
parameters_.linear_solver_maxiter_,
|
|
verbosity);
|
|
// Solve system.
|
|
linsolve.apply(x, istlb, result);
|
|
}
|
|
}
|
|
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] A matrix A
|
|
/// \param[inout] x solution to be computed x
|
|
/// \param[in] b right hand side b
|
|
void solve(Matrix& A, Vector& x, Vector& b ) const
|
|
{
|
|
// Parallel version is deactivated until we figure out how to do it properly.
|
|
#if HAVE_MPI
|
|
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
|
|
{
|
|
// Construct operator, scalar product and vectors needed.
|
|
typedef Dune::OverlappingSchwarzOperator<Matrix, Vector, Vector,Comm> Operator;
|
|
Operator opA(A, *comm_);
|
|
solve( opA, x, b, *comm_ );
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// Construct operator, scalar product and vectors needed.
|
|
Dune::MatrixAdapter< Matrix, Vector, Vector> opA( A );
|
|
solve( opA, x, b );
|
|
}
|
|
}
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] A matrix A
|
|
/// \param[inout] x solution to be computed x
|
|
/// \param[in] b right hand side b
|
|
template <class Operator, class Comm >
|
|
void solve(Operator& opA OPM_UNUSED_NOMPI,
|
|
Vector& x OPM_UNUSED_NOMPI,
|
|
Vector& b OPM_UNUSED_NOMPI,
|
|
Comm& comm OPM_UNUSED_NOMPI) const
|
|
{
|
|
Dune::InverseOperatorResult result;
|
|
// Parallel version is deactivated until we figure out how to do it properly.
|
|
#if HAVE_MPI
|
|
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
|
|
{
|
|
// Construct operator, scalar product and vectors needed.
|
|
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, x, b, comm, result);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
OPM_THROW(std::logic_error,"this method if for parallel solve only");
|
|
}
|
|
|
|
checkConvergence( result );
|
|
}
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] A matrix A
|
|
/// \param[inout] x solution to be computed x
|
|
/// \param[in] b right hand side b
|
|
template <class Operator>
|
|
void solve(Operator& opA, Vector& x, Vector& b ) const
|
|
{
|
|
Dune::InverseOperatorResult result;
|
|
// Construct operator, scalar product and vectors needed.
|
|
Dune::Amg::SequentialInformation info;
|
|
constructPreconditionerAndSolve(opA, x, b, info, result);
|
|
checkConvergence( result );
|
|
}
|
|
|
|
void checkConvergence( const Dune::InverseOperatorResult& result ) const
|
|
{
|
|
// store number of iterations
|
|
iterations_ = result.iterations;
|
|
converged_ = result.converged;
|
|
|
|
// Check for failure of linear solver.
|
|
if (!parameters_.ignoreConvergenceFailure_ && !result.converged) {
|
|
const std::string msg("Convergence failure for linear solver.");
|
|
OPM_THROW_NOLOG(NumericalIssue, msg);
|
|
}
|
|
}
|
|
protected:
|
|
|
|
bool isParallel() const {
|
|
#if HAVE_MPI
|
|
return comm_->communicator().size() > 1;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void prepareFlexibleSolver()
|
|
{
|
|
// Decide if we should recreate the solver or just do
|
|
// a minimal preconditioner update.
|
|
const int newton_iteration = this->simulator_.model().newtonMethod().numIterations();
|
|
bool recreate_solver = false;
|
|
if (this->parameters_.cpr_reuse_setup_ == 0) {
|
|
// Always recreate solver.
|
|
recreate_solver = true;
|
|
} else if (this->parameters_.cpr_reuse_setup_ == 1) {
|
|
// Recreate solver on the first iteration of every timestep.
|
|
if (newton_iteration == 0) {
|
|
recreate_solver = true;
|
|
}
|
|
} else if (this->parameters_.cpr_reuse_setup_ == 2) {
|
|
// Recreate solver if the last solve used more than 10 iterations.
|
|
if (this->iterations() > 10) {
|
|
recreate_solver = true;
|
|
}
|
|
} else {
|
|
assert(this->parameters_.cpr_reuse_setup_ == 3);
|
|
assert(recreate_solver == false);
|
|
// Never recreate solver.
|
|
}
|
|
|
|
std::function<Vector()> weightsCalculator;
|
|
|
|
auto preconditionerType = prm_.get("preconditioner.type", "cpr");
|
|
if( preconditionerType == "cpr" ||
|
|
preconditionerType == "cprt"
|
|
)
|
|
{
|
|
bool transpose = false;
|
|
if(preconditionerType == "cprt"){
|
|
transpose = true;
|
|
}
|
|
|
|
auto weightsType = prm_.get("preconditioner.weight_type", "quasiimpes");
|
|
auto pressureIndex = this->prm_.get("preconditioner.pressure_var_index", 1);
|
|
if(weightsType == "quasiimpes") {
|
|
// weighs will be created as default in the solver
|
|
weightsCalculator =
|
|
[this, transpose, pressureIndex](){
|
|
return Opm::Amg::getQuasiImpesWeights<Matrix,
|
|
Vector>(getMatrix(),
|
|
pressureIndex,
|
|
transpose);
|
|
};
|
|
|
|
}else if(weightsType == "trueimpes" ){
|
|
weightsCalculator =
|
|
[this](){
|
|
return this->getStorageWeights();
|
|
};
|
|
}else{
|
|
OPM_THROW(std::invalid_argument, "Weights type " << weightsType << "not implemented for cpr."
|
|
<< " Please use quasiimpes or trueimpes.");
|
|
}
|
|
}
|
|
|
|
if (recreate_solver || !flexibleSolver_) {
|
|
if (isParallel()) {
|
|
#if HAVE_MPI
|
|
if (useWellConn_) {
|
|
assert(noGhostMat_);
|
|
using ParOperatorType = Dune::OverlappingSchwarzOperator<Matrix, Vector, Vector, Comm>;
|
|
linearOperatorForFlexibleSolver_ = std::make_unique<ParOperatorType>(getMatrix(), *comm_);
|
|
flexibleSolver_ = std::make_unique<FlexibleSolverType>(*linearOperatorForFlexibleSolver_, *comm_, prm_, weightsCalculator);
|
|
} else {
|
|
if (!ownersFirst_) {
|
|
OPM_THROW(std::runtime_error, "In parallel, the flexible solver requires "
|
|
"--owner-cells-first=true when --matrix-add-well-contributions=false is used.");
|
|
}
|
|
using ParOperatorType = WellModelGhostLastMatrixAdapter<Matrix, Vector, Vector, true>;
|
|
wellOperator_ = std::make_unique<WellModelOperator>(simulator_.problem().wellModel());
|
|
linearOperatorForFlexibleSolver_ = std::make_unique<ParOperatorType>(getMatrix(), *wellOperator_, interiorCellNum_);
|
|
flexibleSolver_ = std::make_unique<FlexibleSolverType>(*linearOperatorForFlexibleSolver_, *comm_, prm_, weightsCalculator);
|
|
}
|
|
#endif
|
|
} else {
|
|
using SeqLinearOperator = Dune::MatrixAdapter<Matrix, Vector, Vector>;
|
|
linearOperatorForFlexibleSolver_ = std::make_unique<SeqLinearOperator>(getMatrix());
|
|
flexibleSolver_ = std::make_unique<FlexibleSolverType>(*linearOperatorForFlexibleSolver_, prm_, weightsCalculator);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
flexibleSolver_->preconditioner().update();
|
|
}
|
|
}
|
|
|
|
/// Create sparsity pattern of matrix without off-diagonal ghost entries.
|
|
void noGhostAdjacency()
|
|
{
|
|
const auto& grid = simulator_.vanguard().grid();
|
|
const auto& gridView = simulator_.vanguard().gridView();
|
|
// For some reason simulator_.model().elementMapper() is not initialized at this stage.
|
|
// Hence const auto& elemMapper = simulator_.model().elementMapper(); does not work.
|
|
// Set it up manually
|
|
using ElementMapper =
|
|
Dune::MultipleCodimMultipleGeomTypeMapper<GridView>;
|
|
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
|
|
typedef typename Matrix::size_type size_type;
|
|
size_type numCells = grid.size( 0 );
|
|
noGhostMat_.reset(new Matrix(numCells, numCells, Matrix::random));
|
|
|
|
std::vector<std::set<size_type>> pattern;
|
|
pattern.resize(numCells);
|
|
|
|
auto elemIt = gridView.template begin<0>();
|
|
const auto& elemEndIt = gridView.template end<0>();
|
|
|
|
//Loop over cells
|
|
for (; elemIt != elemEndIt; ++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
size_type idx = elemMapper.index(elem);
|
|
pattern[idx].insert(idx);
|
|
|
|
// Add well non-zero connections
|
|
for (auto wc = wellConnectionsGraph_[idx].begin(); wc!=wellConnectionsGraph_[idx].end(); ++wc)
|
|
pattern[idx].insert(*wc);
|
|
|
|
// Add just a single element to ghost rows
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
{
|
|
noGhostMat_->setrowsize(idx, pattern[idx].size());
|
|
}
|
|
else {
|
|
auto isend = gridView.iend(elem);
|
|
for (auto is = gridView.ibegin(elem); is!=isend; ++is)
|
|
{
|
|
//check if face has neighbor
|
|
if (is->neighbor())
|
|
{
|
|
size_type nid = elemMapper.index(is->outside());
|
|
pattern[idx].insert(nid);
|
|
}
|
|
}
|
|
noGhostMat_->setrowsize(idx, pattern[idx].size());
|
|
}
|
|
}
|
|
noGhostMat_->endrowsizes();
|
|
for (size_type dofId = 0; dofId < numCells; ++dofId)
|
|
{
|
|
auto nabIdx = pattern[dofId].begin();
|
|
auto endNab = pattern[dofId].end();
|
|
for (; nabIdx != endNab; ++nabIdx)
|
|
{
|
|
noGhostMat_->addindex(dofId, *nabIdx);
|
|
}
|
|
}
|
|
noGhostMat_->endindices();
|
|
}
|
|
|
|
/// Set the ghost diagonal in noGhost to diag(1.0)
|
|
void setGhostsInNoGhost(Matrix& ng)
|
|
{
|
|
ng=0;
|
|
typedef typename Matrix::block_type MatrixBlockTypeT;
|
|
MatrixBlockTypeT diag_block(0.0);
|
|
for (int eq = 0; eq < Matrix::block_type::rows; ++eq)
|
|
diag_block[eq][eq] = 1.0;
|
|
|
|
//loop over precalculated ghost rows and columns
|
|
for (auto row = overlapRows_.begin(); row != overlapRows_.end(); row++ )
|
|
{
|
|
int lcell = *row;
|
|
//diagonal block set to 1
|
|
ng[lcell][lcell] = diag_block;
|
|
}
|
|
}
|
|
|
|
/// Copy interior rows to noghost matrix
|
|
void copyJacToNoGhost(const Matrix& jac, Matrix& ng)
|
|
{
|
|
//Loop over precalculated interior rows.
|
|
for (auto row = interiorRows_.begin(); row != interiorRows_.end(); row++ )
|
|
{
|
|
//Copy row
|
|
ng[*row] = jac[*row];
|
|
}
|
|
}
|
|
|
|
// Weights to make approximate pressure equations.
|
|
// Calculated from the storage terms (only) of the
|
|
// conservation equations, ignoring all other terms.
|
|
Vector getStorageWeights() const
|
|
{
|
|
Vector weights(rhs_->size());
|
|
ElementContext elemCtx(simulator_);
|
|
Opm::Amg::getTrueImpesWeights(pressureVarIndex, weights, simulator_.vanguard().gridView(),
|
|
elemCtx, simulator_.model(),
|
|
ThreadManager::threadId());
|
|
return weights;
|
|
}
|
|
|
|
// Interaction between the CPR weights (the function argument 'weights')
|
|
// and the variable and equation weights from
|
|
// simulator_.model().primaryVarWeight() and
|
|
// simulator_.model().eqWeight() is nontrivial and does not work
|
|
// at the moment. Possibly refactoring of ewoms weight treatment
|
|
// is needed. In the meantime this function shows what needs to be
|
|
// done to integrate the weights properly.
|
|
void scaleEquationsAndVariables(Vector& weights)
|
|
{
|
|
// loop over primary variables
|
|
const auto endi = getMatrix().end();
|
|
for (auto i = getMatrix().begin(); i != endi; ++i) {
|
|
const auto endj = (*i).end();
|
|
BlockVector& brhs = (*rhs_)[i.index()];
|
|
for (auto j = (*i).begin(); j != endj; ++j) {
|
|
MatrixBlockType& block = *j;
|
|
for (std::size_t ii = 0; ii < block.rows; ii++ ) {
|
|
for (std::size_t jj = 0; jj < block.cols; jj++) {
|
|
double var_scale = simulator_.model().primaryVarWeight(i.index(),jj);
|
|
block[ii][jj] /= var_scale;
|
|
block[ii][jj] *= simulator_.model().eqWeight(i.index(), ii);
|
|
}
|
|
}
|
|
}
|
|
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
|
|
brhs[ii] *= simulator_.model().eqWeight(i.index(), ii);
|
|
}
|
|
if (weights.size() == getMatrix().N()) {
|
|
BlockVector& bw = weights[i.index()];
|
|
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
|
|
bw[ii] /= simulator_.model().eqWeight(i.index(), ii);
|
|
}
|
|
double abs_max =
|
|
*std::max_element(bw.begin(), bw.end(), [](double a, double b){ return std::abs(a) < std::abs(b); } );
|
|
bw /= abs_max;
|
|
}
|
|
}
|
|
}
|
|
|
|
void scaleSolution(Vector& x)
|
|
{
|
|
for (std::size_t i = 0; i < x.size(); ++i) {
|
|
auto& bx = x[i];
|
|
for (std::size_t jj = 0; jj < bx.size(); jj++) {
|
|
double var_scale = simulator_.model().primaryVarWeight(i,jj);
|
|
bx[jj] /= var_scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
Vector getQuasiImpesWeights()
|
|
{
|
|
return Amg::getQuasiImpesWeights<Matrix,Vector>(getMatrix(), pressureVarIndex, /* transpose=*/ true);
|
|
}
|
|
|
|
Vector getSimpleWeights(const BlockVector& rhs)
|
|
{
|
|
Vector weights(rhs_->size(), 0);
|
|
for (auto& bw : weights) {
|
|
bw = rhs;
|
|
}
|
|
return weights;
|
|
}
|
|
|
|
void scaleMatrixAndRhs(const Vector& weights)
|
|
{
|
|
using Block = typename Matrix::block_type;
|
|
const auto endi = getMatrix().end();
|
|
for (auto i = getMatrix().begin(); i !=endi; ++i) {
|
|
const BlockVector& bweights = weights[i.index()];
|
|
BlockVector& brhs = (*rhs_)[i.index()];
|
|
const auto endj = (*i).end();
|
|
for (auto j = (*i).begin(); j != endj; ++j) {
|
|
// assume it is something on all rows
|
|
Block& block = (*j);
|
|
BlockVector neweq(0.0);
|
|
for (std::size_t ii = 0; ii < block.rows; ii++) {
|
|
for (std::size_t jj = 0; jj < block.cols; jj++) {
|
|
neweq[jj] += bweights[ii]*block[ii][jj];
|
|
}
|
|
}
|
|
block[pressureEqnIndex] = neweq;
|
|
}
|
|
Scalar newrhs(0.0);
|
|
for (std::size_t ii = 0; ii < brhs.size(); ii++) {
|
|
newrhs += bweights[ii]*brhs[ii];
|
|
}
|
|
brhs[pressureEqnIndex] = newrhs;
|
|
}
|
|
}
|
|
|
|
static void multBlocksInMatrix(Matrix& ebosJac, const MatrixBlockType& trans, const bool left = true)
|
|
{
|
|
const int n = ebosJac.N();
|
|
for (int row_index = 0; row_index < n; ++row_index) {
|
|
auto& row = ebosJac[row_index];
|
|
auto* dataptr = row.getptr();
|
|
for (int elem = 0; elem < row.N(); ++elem) {
|
|
auto& block = dataptr[elem];
|
|
if (left) {
|
|
block = block.leftmultiply(trans);
|
|
} else {
|
|
block = block.rightmultiply(trans);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void multBlocksVector(Vector& ebosResid_cp, const MatrixBlockType& leftTrans)
|
|
{
|
|
for (auto& bvec : ebosResid_cp) {
|
|
auto bvec_new = bvec;
|
|
leftTrans.mv(bvec, bvec_new);
|
|
bvec = bvec_new;
|
|
}
|
|
}
|
|
|
|
static void scaleCPRSystem(Matrix& M_cp, Vector& b_cp, const MatrixBlockType& leftTrans)
|
|
{
|
|
multBlocksInMatrix(M_cp, leftTrans, true);
|
|
multBlocksVector(b_cp, leftTrans);
|
|
}
|
|
|
|
Matrix& getMatrix()
|
|
{
|
|
return noGhostMat_ ? *noGhostMat_ : *matrix_;
|
|
}
|
|
|
|
const Matrix& getMatrix() const
|
|
{
|
|
return noGhostMat_ ? *noGhostMat_ : *matrix_;
|
|
}
|
|
|
|
const Simulator& simulator_;
|
|
mutable int iterations_;
|
|
mutable bool converged_;
|
|
std::any parallelInformation_;
|
|
|
|
// non-const to be able to scale the linear system
|
|
Matrix* matrix_;
|
|
std::unique_ptr<Matrix> noGhostMat_;
|
|
Vector *rhs_;
|
|
|
|
std::unique_ptr<FlexibleSolverType> flexibleSolver_;
|
|
std::unique_ptr<AbstractOperatorType> linearOperatorForFlexibleSolver_;
|
|
std::unique_ptr<WellModelAsLinearOperator<WellModel, Vector, Vector>> wellOperator_;
|
|
std::vector<int> overlapRows_;
|
|
std::vector<int> interiorRows_;
|
|
std::vector<std::set<int>> wellConnectionsGraph_;
|
|
|
|
bool ownersFirst_;
|
|
bool useWellConn_;
|
|
bool useFlexible_;
|
|
size_t interiorCellNum_;
|
|
|
|
FlowLinearSolverParameters parameters_;
|
|
boost::property_tree::ptree prm_;
|
|
Vector weights_;
|
|
bool scale_variables_;
|
|
|
|
std::shared_ptr< communication_type > comm_;
|
|
}; // end ISTLSolver
|
|
|
|
} // namespace Opm
|
|
#endif
|