opm-simulators/ebos/ecloutputblackoilmodule.hh
Bård Skaflestad 9f22e125f9 Extract Block-Level Component-in-Place Summary Values
This commit calculates the various BxIP* summary output values such
as BOIP (block-level oil-in-place) and BGIPL (block-level
gas-in-place in liquid phase).  While here, also extract the
block-level dissolved gas-oil-ratio (BRS) and vaporised
oil-gas-ratio (BRV).
2022-05-20 23:13:27 +02:00

1086 lines
51 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::EclOutputBlackOilModule
*/
#ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
#define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/output/eclipse/Inplace.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <ebos/eclgenericoutputblackoilmodule.hh>
#include <dune/common/fvector.hh>
#include <algorithm>
#include <array>
#include <cstddef>
#include <initializer_list>
#include <numeric>
#include <optional>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
namespace Opm::Properties {
// create new type tag for the Ecl-output
namespace TTag {
struct EclOutputBlackOil {};
}
template<class TypeTag, class MyTypeTag>
struct ForceDisableFluidInPlaceOutput {
using type = UndefinedProperty;
};
template<class TypeTag>
struct ForceDisableFluidInPlaceOutput<TypeTag, TTag::EclOutputBlackOil> {
static constexpr bool value = false;
};
template<class TypeTag, class MyTypeTag>
struct ForceDisableResvFluidInPlaceOutput {
using type = UndefinedProperty;
};
template<class TypeTag>
struct ForceDisableResvFluidInPlaceOutput<TypeTag, TTag::EclOutputBlackOil> {
static constexpr bool value = false;
};
} // namespace Opm::Properties
namespace Opm {
// forward declaration
template <class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Output module for the results black oil model writing in
* ECL binary format.
*/
template <class TypeTag>
class EclOutputBlackOilModule : public EclGenericOutputBlackoilModule<GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>
{
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementIterator = typename GridView::template Codim<0>::Iterator;
using BaseType = EclGenericOutputBlackoilModule<FluidSystem, Scalar>;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
public:
template <class CollectDataToIORankType>
EclOutputBlackOilModule(const Simulator& simulator,
const std::vector<std::size_t>& wbp_index_list,
const CollectDataToIORankType& collectToIORank)
: BaseType(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().summaryConfig(),
simulator.vanguard().summaryState(),
getPropValue<TypeTag, Properties::EnableEnergy>(),
getPropValue<TypeTag, Properties::EnableTemperature>(),
getPropValue<TypeTag, Properties::EnableSolvent>(),
getPropValue<TypeTag, Properties::EnablePolymer>(),
getPropValue<TypeTag, Properties::EnableFoam>(),
getPropValue<TypeTag, Properties::EnableBrine>(),
getPropValue<TypeTag, Properties::EnableSaltPrecipitation>(),
getPropValue<TypeTag, Properties::EnableExtbo>(),
getPropValue<TypeTag, Properties::EnableMICP>())
, simulator_(simulator)
{
for (auto& region_pair : this->regions_) {
this->createLocalRegion_(region_pair.second);
}
for (const auto& node : this->simulator_.vanguard().summaryConfig()) {
if ((node.category() == SummaryConfigNode::Category::Block) &&
collectToIORank.isCartIdxOnThisRank(node.number() - 1))
{
this->blockData_.emplace(std::piecewise_construct,
std::forward_as_tuple(node.keyword(),
node.number()),
std::forward_as_tuple(0.0));
}
}
for (const auto& global_index : wbp_index_list) {
if (collectToIORank.isCartIdxOnThisRank(global_index - 1)) {
this->wbpData_.emplace(global_index, 0.0);
}
}
this->forceDisableFipOutput_ =
EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput);
this->forceDisableFipresvOutput_ =
EWOMS_GET_PARAM(TypeTag, bool, ForceDisableResvFluidInPlaceOutput);
}
/*!
* \brief Register all run-time parameters for the Vtk output module.
*/
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput,
"Do not print fluid-in-place values after each report step even if requested by the deck.");
EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableResvFluidInPlaceOutput,
"Do not print reservoir volumes values after each report step even if requested by the deck.");
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to ECL output files
*/
void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log, const bool isRestart)
{
if (!std::is_same<Discretization, EcfvDiscretization<TypeTag> >::value)
return;
this->doAllocBuffers(bufferSize,
reportStepNum,
substep,
log,
isRestart,
simulator_.problem().vapparsActive(std::max(simulator_.episodeIndex(), 0)),
simulator_.problem().materialLawManager()->enableHysteresis(),
simulator_.problem().tracerModel().numTracers());
}
/*!
* \brief Modify the internal buffers according to the intensive quanties relevant
* for an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!std::is_same<Discretization, EcfvDiscretization<TypeTag> >::value)
return;
const auto& problem = elemCtx.simulator().problem();
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) {
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
typedef typename std::remove_const<typename std::remove_reference<decltype(fs)>::type>::type FluidState;
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (this->saturation_[phaseIdx].empty())
continue;
this->saturation_[phaseIdx][globalDofIdx] = getValue(fs.saturation(phaseIdx));
Valgrind::CheckDefined(this->saturation_[phaseIdx][globalDofIdx]);
}
if (!this->oilPressure_.empty()) {
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->oilPressure_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx));
}else{
// put pressure in oil pressure for output
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
this->oilPressure_[globalDofIdx] = getValue(fs.pressure(waterPhaseIdx));
} else {
this->oilPressure_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx));
}
}
Valgrind::CheckDefined(this->oilPressure_[globalDofIdx]);
}
if (!this->temperature_.empty()) {
this->temperature_[globalDofIdx] = getValue(fs.temperature(oilPhaseIdx));
Valgrind::CheckDefined(this->temperature_[globalDofIdx]);
}
if (!this->gasDissolutionFactor_.empty()) {
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
this->gasDissolutionFactor_[globalDofIdx] =
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx, SoMax);
Valgrind::CheckDefined(this->gasDissolutionFactor_[globalDofIdx]);
}
if (!this->oilVaporizationFactor_.empty()) {
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
this->oilVaporizationFactor_[globalDofIdx] =
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx, SoMax);
Valgrind::CheckDefined(this->oilVaporizationFactor_[globalDofIdx]);
}
if (!this->gasFormationVolumeFactor_.empty()) {
this->gasFormationVolumeFactor_[globalDofIdx] =
1.0/FluidSystem::template inverseFormationVolumeFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx);
Valgrind::CheckDefined(this->gasFormationVolumeFactor_[globalDofIdx]);
}
if (!this->saturatedOilFormationVolumeFactor_.empty()) {
this->saturatedOilFormationVolumeFactor_[globalDofIdx] =
1.0/FluidSystem::template saturatedInverseFormationVolumeFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
Valgrind::CheckDefined(this->saturatedOilFormationVolumeFactor_[globalDofIdx]);
}
if (!this->oilSaturationPressure_.empty()) {
this->oilSaturationPressure_[globalDofIdx] =
FluidSystem::template saturationPressure<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
Valgrind::CheckDefined(this->oilSaturationPressure_[globalDofIdx]);
}
if (!this->rs_.empty()) {
this->rs_[globalDofIdx] = getValue(fs.Rs());
Valgrind::CheckDefined(this->rs_[globalDofIdx]);
}
if (!this->rv_.empty()) {
this->rv_[globalDofIdx] = getValue(fs.Rv());
Valgrind::CheckDefined(this->rv_[globalDofIdx]);
}
if (!this->pcow_.empty()) {
this->pcow_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx)) - getValue(fs.pressure(waterPhaseIdx));
Valgrind::CheckDefined(this->pcow_[globalDofIdx]);
}
if (!this->pcog_.empty()) {
this->pcog_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx)) - getValue(fs.pressure(oilPhaseIdx));
Valgrind::CheckDefined(this->pcog_[globalDofIdx]);
}
if (!this->rvw_.empty()) {
this->rvw_[globalDofIdx] = getValue(fs.Rvw());
Valgrind::CheckDefined(this->rvw_[globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (this->invB_[phaseIdx].empty())
continue;
this->invB_[phaseIdx][globalDofIdx] = getValue(fs.invB(phaseIdx));
Valgrind::CheckDefined(this->invB_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (this->density_[phaseIdx].empty())
continue;
this->density_[phaseIdx][globalDofIdx] = getValue(fs.density(phaseIdx));
Valgrind::CheckDefined(this->density_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (this->viscosity_[phaseIdx].empty())
continue;
if (!this->extboX_.empty() && phaseIdx==oilPhaseIdx)
this->viscosity_[phaseIdx][globalDofIdx] = getValue(intQuants.oilViscosity());
else if (!this->extboX_.empty() && phaseIdx==gasPhaseIdx)
this->viscosity_[phaseIdx][globalDofIdx] = getValue(intQuants.gasViscosity());
else
this->viscosity_[phaseIdx][globalDofIdx] = getValue(fs.viscosity(phaseIdx));
Valgrind::CheckDefined(this->viscosity_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (this->relativePermeability_[phaseIdx].empty())
continue;
this->relativePermeability_[phaseIdx][globalDofIdx] = getValue(intQuants.relativePermeability(phaseIdx));
Valgrind::CheckDefined(this->relativePermeability_[phaseIdx][globalDofIdx]);
}
if (!this->sSol_.empty()) {
this->sSol_[globalDofIdx] = intQuants.solventSaturation().value();
}
if (!this->cPolymer_.empty()) {
this->cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value();
}
if (!this->cFoam_.empty()) {
this->cFoam_[globalDofIdx] = intQuants.foamConcentration().value();
}
if (!this->cSalt_.empty()) {
this->cSalt_[globalDofIdx] = fs.saltConcentration().value();
}
if (!this->pSalt_.empty()) {
this->pSalt_[globalDofIdx] = intQuants.saltSaturation().value();
}
if (!this->permFact_.empty()) {
this->permFact_[globalDofIdx] = intQuants.permFactor().value();
}
if (!this->extboX_.empty()) {
this->extboX_[globalDofIdx] = intQuants.xVolume().value();
}
if (!this->extboY_.empty()) {
this->extboY_[globalDofIdx] = intQuants.yVolume().value();
}
if (!this->extboZ_.empty()) {
this->extboZ_[globalDofIdx] = intQuants.zFraction().value();
}
if (!this->mFracCo2_.empty()) {
const Scalar stdVolOil = getValue(fs.saturation(oilPhaseIdx))*getValue(fs.invB(oilPhaseIdx))
+ getValue(fs.saturation(gasPhaseIdx))*getValue(fs.invB(gasPhaseIdx))*getValue(fs.Rv());
const Scalar stdVolGas = getValue(fs.saturation(gasPhaseIdx))*getValue(fs.invB(gasPhaseIdx))*(1.0-intQuants.yVolume().value())
+ getValue(fs.saturation(oilPhaseIdx))*getValue(fs.invB(oilPhaseIdx))*getValue(fs.Rs())*(1.0-intQuants.xVolume().value());
const Scalar stdVolCo2 = getValue(fs.saturation(gasPhaseIdx))*getValue(fs.invB(gasPhaseIdx))*intQuants.yVolume().value()
+ getValue(fs.saturation(oilPhaseIdx))*getValue(fs.invB(oilPhaseIdx))*getValue(fs.Rs())*intQuants.xVolume().value();
const Scalar rhoO= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
const Scalar rhoG= FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
const Scalar rhoCO2= intQuants.zRefDensity();
const Scalar stdMassTotal= 1.0e-10 + stdVolOil*rhoO + stdVolGas*rhoG + stdVolCo2*rhoCO2;
this->mFracOil_[globalDofIdx] = stdVolOil*rhoO/stdMassTotal;
this->mFracGas_[globalDofIdx] = stdVolGas*rhoG/stdMassTotal;
this->mFracCo2_[globalDofIdx] = stdVolCo2*rhoCO2/stdMassTotal;
}
if (!this->cMicrobes_.empty()) {
this->cMicrobes_[globalDofIdx] = intQuants.microbialConcentration().value();
}
if (!this->cOxygen_.empty()) {
this->cOxygen_[globalDofIdx] = intQuants.oxygenConcentration().value();
}
if (!this->cUrea_.empty()) {
this->cUrea_[globalDofIdx] = 10 * intQuants.ureaConcentration().value(); //Reescaling back the urea concentration (see WellInterface_impl.hpp)
}
if (!this->cBiofilm_.empty()) {
this->cBiofilm_[globalDofIdx] = intQuants.biofilmConcentration().value();
}
if (!this->cCalcite_.empty()) {
this->cCalcite_[globalDofIdx] = intQuants.calciteConcentration().value();
}
if (!this->bubblePointPressure_.empty()) {
try {
this->bubblePointPressure_[globalDofIdx] = getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()));
}
catch (const NumericalIssue&) {
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
this->failedCellsPb_.push_back(cartesianIdx);
}
}
if (!this->dewPointPressure_.empty()) {
try {
this->dewPointPressure_[globalDofIdx] = getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()));
}
catch (const NumericalIssue&) {
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
this->failedCellsPd_.push_back(cartesianIdx);
}
}
if (!this->soMax_.empty())
this->soMax_[globalDofIdx] =
std::max(getValue(fs.saturation(oilPhaseIdx)),
problem.maxOilSaturation(globalDofIdx));
if (!this->swMax_.empty())
this->swMax_[globalDofIdx] =
std::max(getValue(fs.saturation(waterPhaseIdx)),
problem.maxWaterSaturation(globalDofIdx));
if (!this->minimumOilPressure_.empty())
this->minimumOilPressure_[globalDofIdx] =
std::min(getValue(fs.pressure(oilPhaseIdx)),
problem.minOilPressure(globalDofIdx));
if (!this->overburdenPressure_.empty())
this->overburdenPressure_[globalDofIdx] = problem.overburdenPressure(globalDofIdx);
if (!this->rockCompPorvMultiplier_.empty())
this->rockCompPorvMultiplier_[globalDofIdx] = problem.template rockCompPoroMultiplier<Scalar>(intQuants, globalDofIdx);
if (!this->rockCompTransMultiplier_.empty())
this->rockCompTransMultiplier_[globalDofIdx] = problem.template rockCompTransMultiplier<Scalar>(intQuants, globalDofIdx);
const auto& matLawManager = problem.materialLawManager();
if (matLawManager->enableHysteresis()) {
if (!this->pcSwMdcOw_.empty() && !this->krnSwMdcOw_.empty()) {
matLawManager->oilWaterHysteresisParams(
this->pcSwMdcOw_[globalDofIdx],
this->krnSwMdcOw_[globalDofIdx],
globalDofIdx);
}
if (!this->pcSwMdcGo_.empty() && !this->krnSwMdcGo_.empty()) {
matLawManager->gasOilHysteresisParams(
this->pcSwMdcGo_[globalDofIdx],
this->krnSwMdcGo_[globalDofIdx],
globalDofIdx);
}
}
if (!this->ppcw_.empty()) {
this->ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow;
//printf("ppcw_[%d] = %lg\n", globalDofIdx, ppcw_[globalDofIdx]);
}
// hack to make the intial output of rs and rv Ecl compatible.
// For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step
// where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite
// rs and rv with the values computed in the initially.
// Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values.
// This can be removed when ebos has 100% controll over output
if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto& fsInitial = problem.initialFluidState(globalDofIdx);
// use initial rs and rv values
if (!this->rv_.empty())
this->rv_[globalDofIdx] = fsInitial.Rv();
if (!this->rs_.empty())
this->rs_[globalDofIdx] = fsInitial.Rs();
if (!this->rvw_.empty())
this->rvw_[globalDofIdx] = fsInitial.Rvw();
// re-compute the volume factors, viscosities and densities if asked for
if (!this->density_[oilPhaseIdx].empty())
this->density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (!this->density_[gasPhaseIdx].empty())
this->density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
if (!this->invB_[oilPhaseIdx].empty())
this->invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (!this->invB_[gasPhaseIdx].empty())
this->invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
if (!this->viscosity_[oilPhaseIdx].empty())
this->viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (!this->viscosity_[gasPhaseIdx].empty())
this->viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
}
// Add fluid in Place values
updateFluidInPlace_(elemCtx, dofIdx);
// Adding block data
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
for (auto& val : this->blockData_) {
const auto& key = val.first;
int cartesianIdxBlock = key.second - 1;
if (cartesianIdx == cartesianIdxBlock) {
if ((key.first == "BWSAT") || (key.first == "BSWAT"))
val.second = getValue(fs.saturation(waterPhaseIdx));
else if ((key.first == "BGSAT") || (key.first == "BSGAS"))
val.second = getValue(fs.saturation(gasPhaseIdx));
else if ((key.first == "BOSAT") || (key.first == "BSOIL"))
val.second = getValue(fs.saturation(oilPhaseIdx));
else if (key.first == "BNSAT")
val.second = intQuants.solventSaturation().value();
else if ((key.first == "BPR") || (key.first == "BPRESSUR")){
if (FluidSystem::phaseIsActive(oilPhaseIdx))
val.second = getValue(fs.pressure(oilPhaseIdx));
else if (FluidSystem::phaseIsActive(gasPhaseIdx))
val.second = getValue(fs.pressure(gasPhaseIdx));
else if (FluidSystem::phaseIsActive(waterPhaseIdx))
val.second = getValue(fs.pressure(waterPhaseIdx));
}
else if ((key.first == "BTCNFHEA") || (key.first == "BTEMP")){
if (FluidSystem::phaseIsActive(oilPhaseIdx))
val.second = getValue(fs.temperature(oilPhaseIdx));
else if (FluidSystem::phaseIsActive(gasPhaseIdx))
val.second = getValue(fs.temperature(gasPhaseIdx));
else if (FluidSystem::phaseIsActive(waterPhaseIdx))
val.second = getValue(fs.temperature(waterPhaseIdx));
}
else if (key.first == "BWKR" || key.first == "BKRW")
val.second = getValue(intQuants.relativePermeability(waterPhaseIdx));
else if (key.first == "BGKR" || key.first == "BKRG")
val.second = getValue(intQuants.relativePermeability(gasPhaseIdx));
else if (key.first == "BOKR" || key.first == "BKRO")
val.second = getValue(intQuants.relativePermeability(oilPhaseIdx));
else if (key.first == "BKROG") {
const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, /* timeIdx = */ 0);
const auto krog = MaterialLaw::template relpermOilInOilGasSystem<Evaluation>(materialParams, fs);
val.second = getValue(krog);
}
else if (key.first == "BKROW") {
const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, /* timeIdx = */ 0);
const auto krow = MaterialLaw::template relpermOilInOilWaterSystem<Evaluation>(materialParams, fs);
val.second = getValue(krow);
}
else if (key.first == "BWPC")
val.second = getValue(fs.pressure(oilPhaseIdx)) - getValue(fs.pressure(waterPhaseIdx));
else if (key.first == "BGPC")
val.second = getValue(fs.pressure(gasPhaseIdx)) - getValue(fs.pressure(oilPhaseIdx));
else if (key.first == "BWPR")
val.second = getValue(fs.pressure(waterPhaseIdx));
else if (key.first == "BGPR")
val.second = getValue(fs.pressure(gasPhaseIdx));
else if (key.first == "BVWAT" || key.first == "BWVIS")
val.second = getValue(fs.viscosity(waterPhaseIdx));
else if (key.first == "BVGAS" || key.first == "BGVIS")
val.second = getValue(fs.viscosity(gasPhaseIdx));
else if (key.first == "BVOIL" || key.first == "BOVIS")
val.second = getValue(fs.viscosity(oilPhaseIdx));
else if ((key.first == "BRPV") ||
(key.first == "BOPV") ||
(key.first == "BWPV") ||
(key.first == "BGPV"))
{
if (key.first == "BRPV") {
val.second = 1.0;
}
else if (key.first == "BOPV") {
val.second = getValue(fs.saturation(oilPhaseIdx));
}
else if (key.first == "BWPV") {
val.second = getValue(fs.saturation(waterPhaseIdx));
}
else {
val.second = getValue(fs.saturation(gasPhaseIdx));
}
// Include active pore-volume.
val.second *= elemCtx.simulator().model().dofTotalVolume(globalDofIdx)
* getValue(intQuants.porosity());
}
else if (key.first == "BRS")
val.second = getValue(fs.Rs());
else if (key.first == "BRV")
val.second = getValue(fs.Rv());
else if ((key.first == "BOIP") ||
(key.first == "BOIPL") ||
(key.first == "BOIPG") ||
(key.first == "BGIP") ||
(key.first == "BGIPL") ||
(key.first == "BGIPG") ||
(key.first == "BWIP"))
{
if ((key.first == "BOIP") || (key.first == "BOIPL")) {
val.second = getValue(fs.invB(oilPhaseIdx))
* getValue(fs.saturation(oilPhaseIdx));
if (key.first == "BOIP") {
val.second += getValue(fs.Rv()) * getValue(fs.invB(gasPhaseIdx))
* getValue(fs.saturation(gasPhaseIdx));
}
}
else if (key.first == "BOIPG") {
val.second = getValue(fs.Rv()) * getValue(fs.invB(gasPhaseIdx))
* getValue(fs.saturation(gasPhaseIdx));
}
else if ((key.first == "BGIP") || (key.first == "BGIPG")) {
val.second = getValue(fs.invB(gasPhaseIdx))
* getValue(fs.saturation(gasPhaseIdx));
if (key.first == "BGIP") {
val.second += getValue(fs.Rs()) * getValue(fs.invB(oilPhaseIdx))
* getValue(fs.saturation(oilPhaseIdx));
}
}
else if (key.first == "BGIPL") {
val.second = getValue(fs.Rs()) * getValue(fs.invB(oilPhaseIdx))
* getValue(fs.saturation(oilPhaseIdx));
}
else { // BWIP
val.second = getValue(fs.invB(waterPhaseIdx))
* getValue(fs.saturation(waterPhaseIdx));
}
// Include active pore-volume.
val.second *= elemCtx.simulator().model().dofTotalVolume(globalDofIdx)
* getValue(intQuants.porosity());
}
else {
std::string logstring = "Keyword '";
logstring.append(key.first);
logstring.append("' is unhandled for output to file.");
OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
// Adding Well RFT data
if (this->oilConnectionPressures_.count(cartesianIdx) > 0) {
this->oilConnectionPressures_[cartesianIdx] = getValue(fs.pressure(oilPhaseIdx));
}
if (this->waterConnectionSaturations_.count(cartesianIdx) > 0) {
this->waterConnectionSaturations_[cartesianIdx] = getValue(fs.saturation(waterPhaseIdx));
}
if (this->gasConnectionSaturations_.count(cartesianIdx) > 0) {
this->gasConnectionSaturations_[cartesianIdx] = getValue(fs.saturation(gasPhaseIdx));
}
if (this->wbpData_.count(cartesianIdx) > 0)
this->wbpData_[cartesianIdx] = getValue(fs.pressure(oilPhaseIdx));
// tracers
const auto& tracerModel = simulator_.problem().tracerModel();
if (!this->tracerConcentrations_.empty()) {
for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){
if (this->tracerConcentrations_[tracerIdx].empty())
continue;
this->tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx);
}
}
}
}
/*!
* \brief Capture connection fluxes, particularly to account for inter-region flows.
*
* \tparam ActiveIndex Callable type, typically a lambda, that enables
* retrieving the active index, on the local MPI rank, of a
* particular cell/element. Must support a function call operator of
* the form
\code
int operator()(const Element& elem) const
\endcode
*
* \tparam CartesianIndex Callable type, typically a lambda, that
* enables retrieving the globally unique Cartesian index of a
* particular cell/element given its active index on the local MPI
* rank. Must support a function call operator of the form
\code
int operator()(const int activeIndex) const
\endcode
*
* \param[in] elemCtx Primary lookup structure for per-cell/element
* dynamic information.
*
* \param[in] activeIndex Mapping from cell/elements to linear indices
* on local MPI rank.
*
* \param[in] cartesianIndex Mapping from active index on local MPI rank
* to globally unique Cartesian cell/element index.
*/
template <class ActiveIndex, class CartesianIndex>
void processFluxes(const ElementContext& elemCtx,
ActiveIndex&& activeIndex,
CartesianIndex&& cartesianIndex)
{
const auto identifyCell = [&activeIndex, &cartesianIndex](const Element& elem)
-> EclInterRegFlowMap::Cell
{
const auto cellIndex = activeIndex(elem);
return {
cellIndex,
cartesianIndex(cellIndex),
elem.partitionType() == Dune::InteriorEntity
};
};
const auto timeIdx = 0u;
const auto& stencil = elemCtx.stencil(timeIdx);
const auto numInteriorFaces = elemCtx.numInteriorFaces(timeIdx);
for (auto scvfIdx = 0*numInteriorFaces; scvfIdx < numInteriorFaces; ++scvfIdx) {
const auto& face = stencil.interiorFace(scvfIdx);
const auto left = identifyCell(stencil.element(face.interiorIndex()));
const auto right = identifyCell(stencil.element(face.exteriorIndex()));
const auto rates = this->
getComponentSurfaceRates(elemCtx, face.area(), scvfIdx, timeIdx);
this->interRegionFlows_.addConnection(left, right, rates);
}
}
/*!
* \brief Prepare for capturing connection fluxes, particularly to
* account for inter-region flows.
*/
void initializeFluxData()
{
// Inter-region flow rates. Note: ".clear()" prepares to accumulate
// contributions per bulk connection between FIP regions.
this->interRegionFlows_.clear();
}
/*!
* \brief Finalize capturing connection fluxes.
*/
void finalizeFluxData()
{
this->interRegionFlows_.compress();
}
/*!
* \brief Get read-only access to collection of inter-region flows.
*/
const EclInterRegFlowMap& getInterRegFlows() const
{
return this->interRegionFlows_;
}
template <class FluidState>
void assignToFluidState(FluidState& fs, unsigned elemIdx) const
{
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (this->saturation_[phaseIdx].empty())
continue;
fs.setSaturation(phaseIdx, this->saturation_[phaseIdx][elemIdx]);
}
if (!this->oilPressure_.empty()) {
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
Dune::FieldVector< Scalar, numPhases > pc(0);
const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx);
MaterialLaw::capillaryPressures(pc, matParams, fs);
Valgrind::CheckDefined(this->oilPressure_[elemIdx]);
Valgrind::CheckDefined(pc);
assert(FluidSystem::phaseIsActive(oilPhaseIdx));
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
fs.setPressure(phaseIdx, this->oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx]));
}
}
if (!this->temperature_.empty())
fs.setTemperature(this->temperature_[elemIdx]);
if (!this->rs_.empty())
fs.setRs(this->rs_[elemIdx]);
if (!this->rv_.empty())
fs.setRv(this->rv_[elemIdx]);
if (!this->rvw_.empty())
fs.setRvw(this->rvw_[elemIdx]);
}
void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const
{
if (!this->soMax_.empty())
simulator.problem().setMaxOilSaturation(elemIdx, this->soMax_[elemIdx]);
if (simulator.problem().materialLawManager()->enableHysteresis()) {
auto matLawManager = simulator.problem().materialLawManager();
if (!this->pcSwMdcOw_.empty() && !this->krnSwMdcOw_.empty()) {
matLawManager->setOilWaterHysteresisParams(
this->pcSwMdcOw_[elemIdx],
this->krnSwMdcOw_[elemIdx],
elemIdx);
}
if (!this->pcSwMdcGo_.empty() && !this->krnSwMdcGo_.empty()) {
matLawManager->setGasOilHysteresisParams(
this->pcSwMdcGo_[elemIdx],
this->krnSwMdcGo_[elemIdx],
elemIdx);
}
}
if (simulator_.vanguard().eclState().fieldProps().has_double("SWATINIT")) {
const auto& oilWaterScaledEpsInfoDrainage =
simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainage(elemIdx);
const_cast<EclEpsScalingPointsInfo<Scalar>&>(oilWaterScaledEpsInfoDrainage).maxPcow = this->ppcw_[elemIdx];
}
}
private:
bool isDefunctParallelWell(std::string wname) const override
{
if (simulator_.gridView().comm().size()==1)
return false;
const auto& parallelWells = simulator_.vanguard().parallelWells();
std::pair<std::string,bool> value{wname, true};
auto candidate = std::lower_bound(parallelWells.begin(), parallelWells.end(),
value);
return candidate == parallelWells.end() || *candidate != value;
}
void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx)
{
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
// Fluid in Place calculations
// calculate the pore volume of the current cell. Note that the porosity
// returned by the intensive quantities is defined as the ratio of pore
// space to total cell volume and includes all pressure dependent (->
// rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG,
// PORV, MINPV and friends). Also note that because of this, the porosity
// returned by the intensive quantities can be outside of the physical
// range [0, 1] in pathetic cases.
const auto totVolume =
elemCtx.simulator().model().dofTotalVolume(globalDofIdx);
const double pv = totVolume * intQuants.porosity().value();
if (!this->pressureTimesHydrocarbonVolume_.empty() && !this->pressureTimesPoreVolume_.empty()) {
assert(this->hydrocarbonPoreVolume_.size() == this->pressureTimesHydrocarbonVolume_.size());
assert(this->fip_[Inplace::Phase::PoreVolume].size() == this->pressureTimesPoreVolume_.size());
this->fip_[Inplace::Phase::PoreVolume][globalDofIdx] =
totVolume * intQuants.referencePorosity();
this->dynamicPoreVolume_[globalDofIdx] = pv;
Scalar hydrocarbon = 0.0;
if (FluidSystem::phaseIsActive(oilPhaseIdx))
hydrocarbon += getValue(fs.saturation(oilPhaseIdx));
if (FluidSystem::phaseIsActive(gasPhaseIdx))
hydrocarbon += getValue(fs.saturation(gasPhaseIdx));
this->hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
this->pressureTimesPoreVolume_[globalDofIdx] = getValue(fs.pressure(oilPhaseIdx)) * pv;
this->pressureTimesHydrocarbonVolume_[globalDofIdx] = this->pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon;
} else if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
this->pressureTimesPoreVolume_[globalDofIdx] = getValue(fs.pressure(gasPhaseIdx)) * pv;
this->pressureTimesHydrocarbonVolume_[globalDofIdx] = this->pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon;
} else if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
this->pressureTimesPoreVolume_[globalDofIdx] = getValue(fs.pressure(waterPhaseIdx)) * pv;
}
}
if (this->computeFip_) {
Scalar fip[FluidSystem::numPhases];
Scalar fipr[FluidSystem::numPhases]; // at reservoir condition
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
fip[phaseIdx] = 0.0;
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const double b = getValue(fs.invB(phaseIdx));
const double s = getValue(fs.saturation(phaseIdx));
fipr[phaseIdx] = s * pv;
fip[phaseIdx] = b * fipr[phaseIdx];
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && !this->fip_[Inplace::Phase::OIL].empty())
this->fip_[Inplace::Phase::OIL][globalDofIdx] = fip[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !this->fip_[Inplace::Phase::GAS].empty())
this->fip_[Inplace::Phase::GAS][globalDofIdx] = fip[gasPhaseIdx];
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !this->fip_[Inplace::Phase::WATER].empty())
this->fip_[Inplace::Phase::WATER][globalDofIdx] = fip[waterPhaseIdx];
if (FluidSystem::phaseIsActive(oilPhaseIdx) && !this->fip_[Inplace::Phase::OilResVolume].empty())
this->fip_[Inplace::Phase::OilResVolume][globalDofIdx] = fipr[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !this->fip_[Inplace::Phase::GasResVolume].empty())
this->fip_[Inplace::Phase::GasResVolume][globalDofIdx] = fipr[gasPhaseIdx];
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !this->fip_[Inplace::Phase::WaterResVolume].empty())
this->fip_[Inplace::Phase::WaterResVolume][globalDofIdx] = fipr[waterPhaseIdx];
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !this->fip_[Inplace::Phase::SALT].empty())
this->fip_[Inplace::Phase::SALT][globalDofIdx] = fipr[waterPhaseIdx] * fs.saltConcentration().value();
// Store the pure oil and gas Fip
if (FluidSystem::phaseIsActive(oilPhaseIdx) && !this->fip_[Inplace::Phase::OilInLiquidPhase].empty())
this->fip_[Inplace::Phase::OilInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !this->fip_[Inplace::Phase::GasInGasPhase].empty())
this->fip_[Inplace::Phase::GasInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
// Gas dissolved in oil and vaporized oil
Scalar gasInPlaceLiquid = getValue(fs.Rs()) * fip[oilPhaseIdx];
Scalar oilInPlaceGas = getValue(fs.Rv()) * fip[gasPhaseIdx];
if (!this->fip_[Inplace::Phase::GasInLiquidPhase].empty())
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
if (!this->fip_[Inplace::Phase::OilInGasPhase].empty())
this->fip_[Inplace::Phase::OilInGasPhase][globalDofIdx] = oilInPlaceGas;
// Add dissolved gas and vaporized oil to total Fip
if (!this->fip_[Inplace::Phase::OIL].empty())
this->fip_[Inplace::Phase::OIL][globalDofIdx] += oilInPlaceGas;
if (!this->fip_[Inplace::Phase::GAS].empty())
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceLiquid;
}
}
}
void createLocalRegion_(std::vector<int>& region)
{
ElementContext elemCtx(simulator_);
ElementIterator elemIt = simulator_.gridView().template begin</*codim=*/0>();
const ElementIterator& elemEndIt = simulator_.gridView().template end</*codim=*/0>();
size_t elemIdx = 0;
for (; elemIt != elemEndIt; ++elemIt, ++elemIdx) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
region[elemIdx] = 0;
}
}
/*!
* \brief Compute surface level component flow rates across a single
* intersection.
*
* \param[in] elemCtx Primary lookup structure for per-cell/element
* dynamic information.
*
* \param[in] scvfIdx Linear index of current interior bulk connection.
*
* \param[in] timeIdx Historical time-point at which to evaluate dynamic
* quantities (e.g., reciprocal FVF or dissolved gas concentration).
* Zero for the current time.
*
* \return Surface level component flow rates.
*/
data::InterRegFlowMap::FlowRates
getComponentSurfaceRates(const ElementContext& elemCtx,
const Scalar faceArea,
const std::size_t scvfIdx,
const std::size_t timeIdx) const
{
using Component = data::InterRegFlowMap::Component;
auto rates = data::InterRegFlowMap::FlowRates{};
const auto& extQuant = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const auto alpha = getValue(extQuant.extrusionFactor()) * faceArea;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
const auto& up = elemCtx
.intensiveQuantities(extQuant.upstreamIndex(oilPhaseIdx), timeIdx);
using FluidState = std::remove_cv_t<std::remove_reference_t<
decltype(up.fluidState())>>;
const auto pvtReg = up.pvtRegionIndex();
const auto bO = getValue(getInvB_<FluidSystem, FluidState, Scalar>
(up.fluidState(), oilPhaseIdx, pvtReg));
const auto qO = alpha * bO * getValue(extQuant.volumeFlux(oilPhaseIdx));
rates[Component::Oil] += qO;
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto Rs = getValue(
BlackOil::getRs_<FluidSystem, FluidState, Scalar>
(up.fluidState(), pvtReg));
rates[Component::Gas] += qO * Rs;
rates[Component::Disgas] += qO * Rs;
}
}
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto& up = elemCtx
.intensiveQuantities(extQuant.upstreamIndex(gasPhaseIdx), timeIdx);
using FluidState = std::remove_cv_t<std::remove_reference_t<
decltype(up.fluidState())>>;
const auto pvtReg = up.pvtRegionIndex();
const auto bG = getValue(getInvB_<FluidSystem, FluidState, Scalar>
(up.fluidState(), gasPhaseIdx, pvtReg));
const auto qG = alpha * bG * getValue(extQuant.volumeFlux(gasPhaseIdx));
rates[Component::Gas] += qG;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
const auto Rv = getValue(
BlackOil::getRv_<FluidSystem, FluidState, Scalar>
(up.fluidState(), pvtReg));
rates[Component::Oil] += qG * Rv;
rates[Component::Vapoil] += qG * Rv;
}
}
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
const auto& up = elemCtx
.intensiveQuantities(extQuant.upstreamIndex(waterPhaseIdx), timeIdx);
using FluidState = std::remove_cv_t<std::remove_reference_t<
decltype(up.fluidState())>>;
const auto pvtReg = up.pvtRegionIndex();
const auto bW = getValue(getInvB_<FluidSystem, FluidState, Scalar>
(up.fluidState(), waterPhaseIdx, pvtReg));
rates[Component::Water] +=
alpha * bW * getValue(extQuant.volumeFlux(waterPhaseIdx));
}
return rates;
}
const Simulator& simulator_;
};
} // namespace Opm
#endif