opm-simulators/opm/models/immiscible/immiscibleboundaryratevector.hh
2020-06-10 13:49:42 +02:00

219 lines
7.9 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::ImmiscibleBoundaryRateVector
*/
#ifndef EWOMS_IMMISCIBLE_BOUNDARY_RATE_VECTOR_HH
#define EWOMS_IMMISCIBLE_BOUNDARY_RATE_VECTOR_HH
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include "immiscibleintensivequantities.hh"
namespace Opm {
/*!
* \ingroup ImmiscibleModel
*
* \brief Implements a boundary vector for the fully implicit
* multi-phase model which assumes immiscibility.
*/
template <class TypeTag>
class ImmiscibleBoundaryRateVector : public GetPropType<TypeTag, Properties::RateVector>
{
using ParentType = GetPropType<TypeTag, Properties::RateVector>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
using Toolbox = Opm::MathToolbox<Evaluation>;
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
public:
ImmiscibleBoundaryRateVector()
: ParentType()
{}
/*!
* \brief Constructor that assigns all entries to a scalar value.
*
* \param value The scalar value to which all components of the
* boundary rate vector will be set.
*/
ImmiscibleBoundaryRateVector(const Evaluation& value)
: ParentType(value)
{}
/*!
* \brief Copy constructor
*
* \param value The boundary rate vector to be duplicated.
*/
ImmiscibleBoundaryRateVector(const ImmiscibleBoundaryRateVector& value) = default;
ImmiscibleBoundaryRateVector& operator=(const ImmiscibleBoundaryRateVector& value) = default;
/*!
* \brief Specify a free-flow boundary
*
* \param context The execution context for which the boundary rate should
* be specified.
* \param bfIdx The local space index of the boundary segment.
* \param timeIdx The index used by the time discretization.
* \param fluidState The repesentation of the thermodynamic state
* of the system on the integration point of the
* boundary segment.
*/
template <class Context, class FluidState>
void setFreeFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState)
{
ExtensiveQuantities extQuants;
extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
unsigned focusDofIdx = context.focusDofIndex();
unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);
////////
// advective fluxes of all components in all phases
////////
(*this) = Evaluation(0.0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const auto& pBoundary = fluidState.pressure(phaseIdx);
const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
// mass conservation
Evaluation density;
if (pBoundary > pInside) {
if (focusDofIdx == interiorDofIdx)
density = fluidState.density(phaseIdx);
else
density = Opm::getValue(fluidState.density(phaseIdx));
}
else if (focusDofIdx == interiorDofIdx)
density = insideIntQuants.fluidState().density(phaseIdx);
else
density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx));
Opm::Valgrind::CheckDefined(density);
Opm::Valgrind::CheckDefined(extQuants.volumeFlux(phaseIdx));
(*this)[conti0EqIdx + phaseIdx] += extQuants.volumeFlux(phaseIdx)*density;
// energy conservation
if (enableEnergy) {
Evaluation specificEnthalpy;
if (pBoundary > pInside) {
if (focusDofIdx == interiorDofIdx)
specificEnthalpy = fluidState.enthalpy(phaseIdx);
else
specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx));
}
else if (focusDofIdx == interiorDofIdx)
specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
else
specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));
Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
}
}
// thermal conduction
EnergyModule::addToEnthalpyRate(*this, EnergyModule::thermalConductionRate(extQuants));
#ifndef NDEBUG
for (unsigned i = 0; i < numEq; ++i)
Opm::Valgrind::CheckDefined((*this)[i]);
Opm::Valgrind::CheckDefined(*this);
#endif
}
/*!
* \brief Specify an inflow boundary
*
* An inflow boundary condition is basically a free flow boundary
* condition that is not prevented from specifying a flow out of
* the domain.
*
* \copydetails setFreeFlow
*/
template <class Context, class FluidState>
void setInFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the direction opposite to the outer unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Evaluation& val = this->operator[](eqIdx);
val = Toolbox::min(0.0, val);
}
}
/*!
* \brief Specify an outflow boundary
*
* An outflow boundary condition is basically a free flow boundary
* condition that is not prevented from specifying a flow into
* the domain.
*
* \copydetails setFreeFlow
*/
template <class Context, class FluidState>
void setOutFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the same direction as the outer unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Evaluation& val = this->operator[](eqIdx);
val = Toolbox::max(0.0, val);
}
}
/*!
* \brief Specify a no-flow boundary for all conserved quantities.
*/
void setNoFlow()
{ (*this) = Evaluation(0.0); }
};
} // namespace Opm
#endif