opm-simulators/opm/autodiff/fastSparseOperations.hpp
Robert Kloefkorn 75ffd897da AutoDiffBlock: revert changes in operator /.
equalSparsityPattern: also include outer index in check.
2016-02-16 17:18:04 +01:00

308 lines
8.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This file has been modified for use in the OPM project codebase.
#ifndef OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
#define OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
#include <Eigen/Sparse>
#include <algorithm>
#include <iterator>
#include <functional>
#include <limits>
#include <vector>
#include <Eigen/Core>
namespace Opm {
template < unsigned int depth >
struct QuickSort
{
template <typename T>
static inline void sort(T begin, T end)
{
if (begin != end)
{
T middle = std::partition (begin, end,
std::bind2nd(std::less<typename std::iterator_traits<T>::value_type>(), *begin)
);
QuickSort< depth-1 >::sort(begin, middle);
// std::sort (max(begin + 1, middle), end);
T new_middle = begin;
QuickSort< depth-1 >::sort(++new_middle, end);
}
}
};
template <>
struct QuickSort< 0 >
{
template <typename T>
static inline void sort(T begin, T end)
{
// fall back to standard insertion sort
std::sort( begin, end );
}
};
template<typename Lhs, typename Rhs, typename ResultType>
void fastSparseProduct(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// initialize result
res = ResultType(lhs.rows(), rhs.cols());
// if one of the matrices does not contain non zero elements
// the result will only contain an empty matrix
if( lhs.nonZeros() == 0 || rhs.nonZeros() == 0 )
return;
typedef typename Eigen::internal::remove_all<Lhs>::type::Scalar Scalar;
typedef typename Eigen::internal::remove_all<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
Eigen::Matrix<Scalar,Eigen::Dynamic,1> values(rows);
Eigen::Matrix<Index, Eigen::Dynamic,1> indices(rows);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
res.setZero();
res.reserve(Index(estimated_nnz_prod));
//const Scalar epsilon = std::numeric_limits< Scalar >::epsilon();
const Scalar epsilon = 0.0;
// we compute each column of the result, one after the other
for (Index j=0; j<cols; ++j)
{
Index nnz = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
const Scalar y = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
const Scalar val = lhsIt.value() * y;
if( std::abs( val ) > epsilon )
{
const Index i = lhsIt.index();
if(!mask[i])
{
mask[i] = true;
values[i] = val;
indices[nnz] = i;
++nnz;
}
else
values[i] += val;
}
}
}
if( nnz > 1 )
{
// sort indices for sorted insertion to avoid later copying
QuickSort< 1 >::sort( indices.data(), indices.data()+nnz );
}
res.startVec(j);
// ordered insertion
// still using insertBackByOuterInnerUnordered since we know what we are doing
for(Index k=0; k<nnz; ++k)
{
const Index i = indices[k];
res.insertBackByOuterInnerUnordered(j,i) = values[i];
mask[i] = false;
}
}
res.finalize();
}
inline void fastDiagSparseProduct(const std::vector<double>& lhs,
const Eigen::SparseMatrix<double>& rhs,
Eigen::SparseMatrix<double>& res)
{
res = rhs;
// Multiply rows by diagonal lhs.
int n = res.cols();
for (int col = 0; col < n; ++col) {
typedef Eigen::SparseMatrix<double>::InnerIterator It;
for (It it(res, col); it; ++it) {
it.valueRef() *= lhs[it.row()];
}
}
}
inline void fastSparseDiagProduct(const Eigen::SparseMatrix<double>& lhs,
const std::vector<double>& rhs,
Eigen::SparseMatrix<double>& res)
{
res = lhs;
// Multiply columns by diagonal rhs.
int n = res.cols();
for (int col = 0; col < n; ++col) {
typedef Eigen::SparseMatrix<double>::InnerIterator It;
for (It it(res, col); it; ++it) {
it.valueRef() *= rhs[col];
}
}
}
template<typename Lhs, typename Rhs>
inline bool
equalSparsityPattern(const Lhs& lhs, const Rhs& rhs)
{
// if both matrices have equal storage and non zeros match, we can check sparsity pattern
bool equal = (Lhs::IsRowMajor == Rhs::IsRowMajor) && (lhs.nonZeros() == rhs.nonZeros());
// check complete sparsity pattern
if( equal )
{
typedef typename Eigen::internal::remove_all<Lhs>::type::Index Index;
const Index outerSize = lhs.outerSize();
if( outerSize != rhs.outerSize() )
{
return false;
}
const Index nnz = lhs.nonZeros();
// outer indices
const Index* rhsOuter = rhs.outerIndexPtr();
const Index* lhsOuter = lhs.outerIndexPtr();
// inner indices
const Index* rhsInner = rhs.innerIndexPtr();
const Index* lhsInner = lhs.innerIndexPtr();
bool equalOuter = true;
bool equalInner = true;
const Index size = std::min( outerSize+1, nnz );
for( Index i=0; i<size; ++i)
{
equalOuter &= (lhsOuter[ i ] == rhsOuter[ i ]);
equalInner &= (lhsInner[ i ] == rhsInner[ i ]);
}
if( ! equalOuter || ! equalInner ) {
return false ;
}
if( outerSize+1 < nnz )
{
for(Index i=outerSize+1; i<nnz; ++i)
{
if( lhsInner[ i ] != rhsInner[ i ] ) {
return false;
}
}
}
else if( outerSize+1 > nnz )
{
for(Index o=nnz; o<=outerSize; ++o )
{
if( lhsOuter[ o ] != rhsOuter[ o ] ) {
return false;
}
}
}
else
{
return equalOuter && equalInner;
}
}
return equal;
}
// this function substracts two sparse matrices
// if the sparsity pattern is the same a faster add/substract is performed
template<typename Lhs, typename Rhs>
inline void
fastSparseAdd(Lhs& lhs, const Rhs& rhs)
{
if( equalSparsityPattern( lhs, rhs ) )
{
typedef typename Eigen::internal::remove_all<Lhs>::type::Scalar Scalar;
typedef typename Eigen::internal::remove_all<Lhs>::type::Index Index;
const Index nnz = lhs.nonZeros();
// fast add using only the data pointers
const Scalar* rhsV = rhs.valuePtr();
Scalar* lhsV = lhs.valuePtr();
for(Index i=0; i<nnz; ++i )
{
lhsV[ i ] += rhsV[ i ];
}
}
else
{
// default Eigen operator+=
lhs = lhs + rhs;
}
}
// this function substracts two sparse matrices
// if the sparsity pattern is the same a faster add/substract is performed
template<typename Lhs, typename Rhs>
inline void
fastSparseSubstract(Lhs& lhs, const Rhs& rhs)
{
if( equalSparsityPattern( lhs, rhs ) )
{
typedef typename Eigen::internal::remove_all<Lhs>::type::Scalar Scalar;
typedef typename Eigen::internal::remove_all<Lhs>::type::Index Index;
const Index nnz = lhs.nonZeros();
// fast add using only the data pointers
const Scalar* rhsV = rhs.valuePtr();
Scalar* lhsV = lhs.valuePtr();
for(Index i=0; i<nnz; ++i )
{
lhsV[ i ] -= rhsV[ i ];
}
}
else
{
// default Eigen operator-=
lhs = lhs - rhs;
}
}
} // end namespace Opm
#endif // OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED