opm-simulators/opm/models/ptflash/flashprimaryvariables.hh

161 lines
5.4 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlashPrimaryVariables
*/
#ifndef OPM_PTFLASH_PRIMARY_VARIABLES_HH
#define OPM_PTFLASH_PRIMARY_VARIABLES_HH
#include "flashindices.hh"
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <iostream>
namespace Opm {
/*!
* \ingroup FlashModel
*
* \brief Represents the primary variables used by the compositional
* flow model based on flash calculations.
*
* This class is basically a Dune::FieldVector which can retrieve its
* contents from an aribitatry fluid state.
*/
template <class TypeTag>
class FlashPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
{
using ParentType = FvBasePrimaryVariables<TypeTag>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
// primary variable indices
enum { z0Idx = Indices::z0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
using Toolbox = typename Opm::MathToolbox<Evaluation>;
using EnergyModule = Opm::EnergyModule<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>()>;
public:
FlashPrimaryVariables() : ParentType()
{ Opm::Valgrind::SetDefined(*this); }
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
*/
FlashPrimaryVariables(Scalar value) : ParentType(value)
{
Opm::Valgrind::CheckDefined(value);
Opm::Valgrind::SetDefined(*this);
}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const
* ImmisciblePrimaryVariables& )
*/
FlashPrimaryVariables(const FlashPrimaryVariables& value) = default;
FlashPrimaryVariables& operator=(const FlashPrimaryVariables& value) = default;
/*!
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
*/
template <class FluidState>
void assignMassConservative(const FluidState& fluidState,
const MaterialLawParams&,
bool = false)
{
// there is no difference between naive and mass conservative
// assignment in the flash model. (we only need the total
// concentrations.)
assignNaive(fluidState);
}
/*!
* \copydoc ImmisciblePrimaryVariables::assignNaive
*/
template <class FluidState>
void assignNaive(const FluidState& fluidState)
{
// reset everything
(*this) = 0.0;
// assign the phase temperatures. this is out-sourced to
// the energy module
EnergyModule::setPriVarTemperatures(*this, fluidState);
// determine the component fractions
Dune::FieldVector<Scalar, numComponents> z(0.0);
Scalar sumMoles = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar tmp = Opm::getValue(fluidState.molarity(phaseIdx, compIdx) * fluidState.saturation(phaseIdx));
z[compIdx] += Opm::max(tmp, 1e-8);
sumMoles += tmp;
}
}
z /= sumMoles;
for (int i = 0; i < numComponents - 1; ++i)
(*this)[z0Idx + i] = z[i];
(*this)[pressure0Idx] = Opm::getValue(fluidState.pressure(0));
}
/*!
* \brief Prints the names of the primary variables and their values.
*
* \param os The \c std::ostream which should be used for the output.
*/
void print(std::ostream& os = std::cout) const
{
os << "(p_" << FluidSystem::phaseName(0) << " = "
<< this->operator[](pressure0Idx);
for (unsigned compIdx = 0; compIdx < numComponents - 2; ++compIdx) {
os << ", z_" << FluidSystem::componentName(compIdx) << " = "
<< this->operator[](z0Idx + compIdx);
}
os << ")" << std::flush;
}
};
} // namespace Opm
#endif