opm-simulators/opm/autodiff/StandardWellsDense_impl.hpp
Kai Bao 77ec45cdd2 recovering the well_controls if solveWellEq not convergent
since we are using the control index from both WellState and
well_controls.
2017-04-11 16:51:16 +02:00

2685 lines
108 KiB
C++

namespace Opm {
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
StandardWellsDense(const Wells* wells_arg,
WellCollection* well_collection,
const ModelParameters& param,
const bool terminal_output)
: wells_active_(wells_arg!=nullptr)
, wells_(wells_arg)
, well_collection_(well_collection)
, param_(param)
, terminal_output_(terminal_output)
, well_perforation_efficiency_factors_((wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0), 1.0)
, well_perforation_densities_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
, well_perforation_pressure_diffs_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
, wellVariables_( wells_ ? (wells_arg->number_of_wells * wells_arg->number_of_phases) : 0)
, F0_(wells_ ? (wells_arg->number_of_wells * wells_arg->number_of_phases) : 0 )
{
if( wells_ )
{
invDuneD_.setBuildMode( Mat::row_wise );
duneC_.setBuildMode( Mat::row_wise );
duneB_.setBuildMode( Mat::row_wise );
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
init(const PhaseUsage phase_usage_arg,
const std::vector<bool>& active_arg,
const VFPProperties* vfp_properties_arg,
const double gravity_arg,
const std::vector<double>& depth_arg,
const std::vector<double>& pv_arg,
const RateConverterType* rate_converter,
long int global_nc)
{
// has to be set always for the convergence check!
global_nc_ = global_nc;
if ( ! localWellsActive() ) {
return;
}
phase_usage_ = phase_usage_arg;
active_ = active_arg;
vfp_properties_ = vfp_properties_arg;
gravity_ = gravity_arg;
cell_depths_ = extractPerfData(depth_arg);
pv_ = pv_arg;
rate_converter_ = rate_converter;
calculateEfficiencyFactors();
// setup sparsity pattern for the matrices
//[A B^T [x = [ res
// C D] x_well] res_well]
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const int nc = numCells();
#ifndef NDEBUG
const auto pu = phase_usage_;
const int np = pu.num_phases;
// assumes the gas fractions are stored after water fractions
// WellVariablePositions needs to be changed for 2p runs
assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) );
#endif
// set invDuneD
invDuneD_.setSize( nw, nw, nw );
// set duneC
duneC_.setSize( nw, nc, nperf );
// set duneB
duneB_.setSize( nw, nc, nperf );
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
row.insert(cell_idx);
}
}
resWell_.resize( nw );
// resize temporary class variables
Cx_.resize( duneC_.N() );
invDrw_.resize( invDuneD_.N() );
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
SimulatorReport
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
assemble(Simulator& ebosSimulator,
const int iterationIdx,
const double dt,
WellState& well_state)
{
SimulatorReport report;
if ( ! localWellsActive() ) {
return report;
}
resetWellControlFromState(well_state);
updateWellControls(well_state);
// Set the primary variables for the wells
setWellVariables(well_state);
if (iterationIdx == 0) {
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWells();
}
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
report = solveWellEq(ebosSimulator, dt, well_state);
}
assembleWellEq(ebosSimulator, dt, well_state, false);
report.converged = true;
return report;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
// clear all entries
duneB_ = 0.0;
duneC_ = 0.0;
invDuneD_ = 0.0;
resWell_ = 0.0;
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
const double volume = 0.002831684659200; // 0.1 cu ft;
for (int w = 0; w < nw; ++w) {
bool allow_cf = allow_cross_flow(w, ebosSimulator);
const EvalWell bhp = getBhp(w);
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
std::vector<EvalWell> cq_s(np,0.0);
std::vector<EvalWell> mob(np, 0.0);
getMobility(ebosSimulator, perf, cell_idx, mob);
computeWellFlux(w, wells().WI[perf], intQuants.fluidState(), mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
for (int p1 = 0; p1 < np; ++p1) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[p1] * well_perforation_efficiency_factors_[perf];
if (!only_wells) {
// subtract sum of phase fluxes in the reservoir equation.
// need to consider the efficiency factor
ebosResid[cell_idx][flowPhaseToEbosCompIdx(p1)] -= cq_s_effective.value();
}
// subtract sum of phase fluxes in the well equations.
resWell_[w][flowPhaseToEbosCompIdx(p1)] -= cq_s[p1].value();
// assemble the jacobians
for (int p2 = 0; p2 < np; ++p2) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s_effective.derivative(p2);
duneB_[w][cell_idx][flowToEbosPvIdx(p2)][flowPhaseToEbosCompIdx(p1)] -= cq_s_effective.derivative(p2+blocksize); // intput in transformed matrix
duneC_[w][cell_idx][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s_effective.derivative(p2);
}
invDuneD_[w][w][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] -= cq_s[p1].derivative(p2+blocksize);
}
// add trivial equation for 2p cases (Only support water + oil)
if (np == 2) {
assert(!active_[ Gas ]);
invDuneD_[w][w][flowPhaseToEbosCompIdx(Gas)][flowToEbosPvIdx(Gas)] = 1.0;
}
// Store the perforation phase flux for later usage.
well_state.perfPhaseRates()[perf*np + p1] = cq_s[p1].value();
}
// Store the perforation pressure for later usage.
well_state.perfPress()[perf] = well_state.bhp()[w] + wellPerforationPressureDiffs()[perf];
}
// add vol * dF/dt + Q to the well equations;
for (int p1 = 0; p1 < np; ++p1) {
EvalWell resWell_loc = (wellSurfaceVolumeFraction(w, p1) - F0_[w + nw*p1]) * volume / dt;
resWell_loc += getQs(w, p1);
for (int p2 = 0; p2 < np; ++p2) {
invDuneD_[w][w][flowPhaseToEbosCompIdx(p1)][flowToEbosPvIdx(p2)] += resWell_loc.derivative(p2+blocksize);
}
resWell_[w][flowPhaseToEbosCompIdx(p1)] += resWell_loc.value();
}
}
// do the local inversion of D.
localInvert( invDuneD_ );
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
getMobility(const Simulator& ebosSimulator, const int perf, const int cell_idx, std::vector<EvalWell>& mob) const
{
const int np = wells().number_of_phases;
assert (mob.size() == np);
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = wells().sat_table_id[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3];
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
bool
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
allow_cross_flow(const int w, Simulator& ebosSimulator) const
{
if (wells().allow_cf[w]) {
return true;
}
// check for special case where all perforations have cross flow
// then the wells must allow for cross flow
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell bhp = getBhp(w);
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + wellPerforationPressureDiffs()[perf];
EvalWell drawdown = pressure - well_pressure;
if (drawdown.value() < 0 && wells().type[w] == INJECTOR) {
return false;
}
if (drawdown.value() > 0 && wells().type[w] == PRODUCER) {
return false;
}
}
return true;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
localInvert(Mat& istlA) const
{
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
//std::cout << (*col) << std::endl;
(*col).invert();
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
print(Mat& istlA) const
{
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
apply( BVector& r) const
{
if ( ! localWellsActive() ) {
return;
}
assert( invDrw_.size() == invDuneD_.N() );
invDuneD_.mv(resWell_,invDrw_);
duneB_.mmtv(invDrw_, r);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
apply(const BVector& x, BVector& Ax)
{
if ( ! localWellsActive() ) {
return;
}
assert( Cx_.size() == duneC_.N() );
BVector& invDCx = invDrw_;
assert( invDCx.size() == invDuneD_.N());
duneC_.mv(x, Cx_);
invDuneD_.mv(Cx_, invDCx);
duneB_.mmtv(invDCx,Ax);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax)
{
if ( ! localWellsActive() ) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
apply( x, scaleAddRes_ );
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
recoverVariable(const BVector& x, BVector& xw) const
{
if ( ! localWellsActive() ) {
return;
}
BVector resWell = resWell_;
duneC_.mmv(x, resWell);
invDuneD_.mv(resWell, xw);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx };
return phaseToComp[ phaseIdx ];
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
flowToEbosPvIdx( const int flowPv ) const
{
const int flowToEbos[ 3 ] = {
BlackoilIndices::pressureSwitchIdx,
BlackoilIndices::waterSaturationIdx,
BlackoilIndices::compositionSwitchIdx
};
return flowToEbos[ flowPv ];
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
return flowToEbos[ phaseIdx ];
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
ebosCompToFlowPhaseIdx( const int compIdx ) const
{
const int compToPhase[ 3 ] = { Oil, Water, Gas };
return compToPhase[ compIdx ];
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
std::vector<double>
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
extractPerfData(const std::vector<double>& in) const
{
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
std::vector<double> out(nperf);
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
const int well_idx = wells().well_cells[perf];
out[perf] = in[well_idx];
}
}
return out;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
numPhases() const
{
return wells().number_of_phases;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
numCells() const
{
return pv_.size();
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
resetWellControlFromState(const WellState& xw) const
{
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
well_controls_set_current( wc, xw.currentControls()[w]);
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
const Wells&
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wells() const
{
assert(wells_ != 0);
return *(wells_);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
const Wells*
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellsPointer() const
{
return wells_;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
bool
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellsActive() const
{
return wells_active_;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
bool
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
localWellsActive() const
{
return wells_ ? (wells_->number_of_wells > 0 ) : false;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
int
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
numWellVars() const
{
if ( !localWellsActive() ) {
return 0;
}
// For each well, we have a bhp variable, and one flux per phase.
const int nw = wells().number_of_wells;
return (numPhases() + 1) * nw;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
const std::vector<double>&
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellPerforationDensities() const
{
return well_perforation_densities_;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
const std::vector<double>&
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellPerforationPressureDiffs() const
{
return well_perforation_pressure_diffs_;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::EvalWell
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
extendEval(Eval in) const {
EvalWell out = 0.0;
out.setValue(in.value());
for(int i = 0; i < blocksize;++i) {
out.setDerivative(i, in.derivative(flowToEbosPvIdx(i)));
}
return out;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
setWellVariables(const WellState& xw)
{
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
for (int w = 0; w < nw; ++w) {
wellVariables_[w + nw*phaseIdx] = 0.0;
wellVariables_[w + nw*phaseIdx].setValue(xw.wellSolutions()[w + nw* phaseIdx]);
wellVariables_[w + nw*phaseIdx].setDerivative(blocksize + phaseIdx, 1.0);
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
print(EvalWell in) const
{
std::cout << in.value() << std::endl;
for (int i = 0; i < in.size; ++i) {
std::cout << in.derivative(i) << std::endl;
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computeAccumWells()
{
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
for (int w = 0; w < nw; ++w) {
F0_[w + nw * phaseIdx] = wellSurfaceVolumeFraction(w, phaseIdx).value();
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template<typename FluidState>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computeWellFlux(const int& w, const double& Tw,
const FluidState& fs,
const std::vector<EvalWell>& mob_perfcells_dense,
const EvalWell& bhp, const double& cdp,
const bool& allow_cf, std::vector<EvalWell>& cq_s) const
{
const Opm::PhaseUsage& pu = phase_usage_;
const int np = wells().number_of_phases;
std::vector<EvalWell> cmix_s(np,0.0);
for (int phase = 0; phase < np; ++phase) {
//int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
cmix_s[phase] = wellSurfaceVolumeFraction(w, phase);
}
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell rs = extendEval(fs.Rs());
EvalWell rv = extendEval(fs.Rv());
std::vector<EvalWell> b_perfcells_dense(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
}
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + cdp;
EvalWell drawdown = pressure - well_pressure;
// injection perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && wells().type[w] == INJECTOR) {
return;
}
// compute phase volumetric rates at standard conditions
std::vector<EvalWell> cq_ps(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
const EvalWell cq_p = - Tw * (mob_perfcells_dense[phase] * drawdown);
cq_ps[phase] = b_perfcells_dense[phase] * cq_p;
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_psOil = cq_ps[oilpos];
const EvalWell cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += rs * cq_psOil;
cq_ps[oilpos] += rv * cq_psGas;
}
// map to ADB
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase];
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && wells().type[w] == PRODUCER) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob_perfcells_dense[0];
for (int phase = 1; phase < np; ++phase) {
total_mob_dense += mob_perfcells_dense[phase];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if (active_[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
}
if (active_[Oil] && active_[Gas]) {
EvalWell well_temperature = extendEval(fs.temperature(FluidSystem::oilPhaseIdx));
EvalWell rsSatEval = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
EvalWell rvSatEval = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), well_temperature, well_pressure);
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << wells().name[w] << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
}
else {
if (active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
}
if (active_[Gas]) {
const int gaspos = pu.phase_pos[Gas];
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i/volumeRatio;
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cmix_s[phase] * cqt_is; // * b_perfcells_dense[phase];
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
SimulatorReport
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
solveWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state)
{
const int nw = wells().number_of_wells;
WellState well_state0 = well_state;
int it = 0;
bool converged;
do {
assembleWellEq(ebosSimulator, dt, well_state, true);
converged = getWellConvergence(ebosSimulator, it);
// checking whether the group targets are converged
if (wellCollection()->groupControlActive()) {
converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates());
}
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
BVector dx_well (nw);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state);
updateWellControls(well_state);
setWellVariables(well_state);
}
} while (it < 15);
if (!converged) {
well_state = well_state0;
// also recover the old well controls
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
well_controls_set_current(wc, well_state.currentControls()[w]);
}
}
SimulatorReport report;
report.converged = converged;
report.total_well_iterations = it;
return report;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
printIf(const int c, const double x, const double y, const double eps, const std::string type) const
{
if (std::abs(x-y) > eps) {
std::cout << type << " " << c << ": "<<x << " " << y << std::endl;
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
std::vector<double>
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
residual() const
{
if( ! wellsActive() )
{
return std::vector<double>();
}
const int np = numPhases();
const int nw = wells().number_of_wells;
std::vector<double> res(np*nw);
for( int p=0; p<np; ++p) {
const int ebosCompIdx = flowPhaseToEbosCompIdx(p);
for (int i = 0; i < nw; ++i) {
int idx = i + nw*p;
res[idx] = resWell_[ i ][ ebosCompIdx ];
}
}
return res;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
bool
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
getWellConvergence(Simulator& ebosSimulator,
const int iteration) const
{
typedef double Scalar;
typedef std::vector< Scalar > Vector;
const int np = numPhases();
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
std::vector< Scalar > B_avg( np, Scalar() );
std::vector< Scalar > maxNormWell(np, Scalar() );
auto& grid = ebosSimulator.gridManager().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator);
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt; ++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for ( int idx = 0; idx < np; ++idx )
{
auto& B = B_avg[ idx ];
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx);
B += 1 / fs.invB(ebosPhaseIdx).value();
}
}
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for(auto& bval: B_avg)
{
bval/=global_nc_;
}
auto res = residual();
const int nw = res.size() / np;
for ( int idx = 0; idx < np; ++idx )
{
for ( int w = 0; w < nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(res[nw*idx + w]));
}
}
grid.comm().max(maxNormWell.data(), maxNormWell.size());
Vector well_flux_residual(np);
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < np; ++idx )
{
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(well_flux_residual[phaseIdx])) {
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
}
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
}
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg;
msg = "Iter";
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
msg += " W-FLUX(" + phaseName + ")";
}
OpmLog::note(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
ss << std::setw(11) << well_flux_residual[phaseIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::note(ss.str());
}
return converged_Well;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw)
{
if( ! localWellsActive() ) return ;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
std::vector<double> b_perf;
std::vector<double> rsmax_perf;
std::vector<double> rvmax_perf;
std::vector<double> surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, cell_depths_, gravity_);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf) const
{
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
const PhaseUsage& pu = phase_usage_;
const int np = phase_usage_.num_phases;
b_perf.resize(nperf*np);
surf_dens_perf.resize(nperf*np);
//rs and rv are only used if both oil and gas is present
if (pu.phase_used[BlackoilPhases::Vapour] && pu.phase_pos[BlackoilPhases::Liquid]) {
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_idx = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : xw.perfPress()[perf - 1];
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * pu.num_phases] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * pu.num_phases;
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(xw.wellRates()[gaspos_well]);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * pu.num_phases;
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
if (pu.phase_used[BlackoilPhases::Vapour]) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
const double gasrate = std::abs(xw.wellRates()[gaspos_well]);
if (gasrate > 0) {
const double oilrate = std::abs(xw.wellRates()[oilpos_well]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (int p = 0; p < pu.num_phases; ++p) {
surf_dens_perf[np*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
}
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
updateWellState(const BVector& dwells,
WellState& well_state) const
{
if( !localWellsActive() ) return;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
double dFLimit = dWellFractionMax();
double dBHPLimit = dbhpMaxRel();
std::vector<double> xvar_well_old = well_state.wellSolutions();
for (int w = 0; w < nw; ++w) {
// update the second and third well variable (The flux fractions)
std::vector<double> F(np,0.0);
if (active_[ Water ]) {
const int sign2 = dwells[w][flowPhaseToEbosCompIdx(WFrac)] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(WFrac)]),dFLimit);
well_state.wellSolutions()[WFrac*nw + w] = xvar_well_old[WFrac*nw + w] - dx2_limited;
}
if (active_[ Gas ]) {
const int sign3 = dwells[w][flowPhaseToEbosCompIdx(GFrac)] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(GFrac)]),dFLimit);
well_state.wellSolutions()[GFrac*nw + w] = xvar_well_old[GFrac*nw + w] - dx3_limited;
}
assert(active_[ Oil ]);
F[Oil] = 1.0;
if (active_[ Water ]) {
F[Water] = well_state.wellSolutions()[WFrac*nw + w];
F[Oil] -= F[Water];
}
if (active_[ Gas ]) {
F[Gas] = well_state.wellSolutions()[GFrac*nw + w];
F[Oil] -= F[Gas];
}
if (active_[ Water ]) {
if (F[Water] < 0.0) {
if (active_[ Gas ]) {
F[Gas] /= (1.0 - F[Water]);
}
F[Oil] /= (1.0 - F[Water]);
F[Water] = 0.0;
}
}
if (active_[ Gas ]) {
if (F[Gas] < 0.0) {
if (active_[ Water ]) {
F[Water] /= (1.0 - F[Gas]);
}
F[Oil] /= (1.0 - F[Gas]);
F[Gas] = 0.0;
}
}
if (F[Oil] < 0.0) {
if (active_[ Water ]) {
F[Water] /= (1.0 - F[Oil]);
}
if (active_[ Gas ]) {
F[Gas] /= (1.0 - F[Oil]);
}
F[Oil] = 0.0;
}
if (active_[ Water ]) {
well_state.wellSolutions()[WFrac*nw + w] = F[Water];
}
if (active_[ Gas ]) {
well_state.wellSolutions()[GFrac*nw + w] = F[Gas];
}
// The interpretation of the first well variable depends on the well control
const WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = well_state.currentControls()[w];
const double target_rate = well_controls_iget_target(wc, current);
std::vector<double> g = {1,1,0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
const double* distr = well_controls_iget_distr(wc, current);
for (int p = 0; p < np; ++p) {
if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value
F[p] /= distr[p];
} else {
F[p] = 0.;
}
}
} else {
for (int p = 0; p < np; ++p) {
F[p] /= g[p];
}
}
switch (well_controls_iget_type(wc, current)) {
case THP: // The BHP and THP both uses the total rate as first well variable.
case BHP:
{
well_state.wellSolutions()[nw*XvarWell + w] = xvar_well_old[nw*XvarWell + w] - dwells[w][flowPhaseToEbosCompIdx(XvarWell)];
switch (wells().type[w]) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = wells().comp_frac[np*w + p];
well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + w];
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = well_state.wellSolutions()[nw*XvarWell + w] * F[p];
}
break;
}
if (well_controls_iget_type(wc, current) == THP) {
// Calculate bhp from thp control and well rates
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[w];
// pick the density in the top layer
const int perf = wells().well_connpos[w];
const double rho = well_perforation_densities_[perf];
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
well_state.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
well_state.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
}
break;
case SURFACE_RATE: // Both rate controls use bhp as first well variable
case RESERVOIR_RATE:
{
const int sign1 = dwells[w][flowPhaseToEbosCompIdx(XvarWell)] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(XvarWell)]),std::abs(xvar_well_old[nw*XvarWell + w])*dBHPLimit);
well_state.wellSolutions()[nw*XvarWell + w] = std::max(xvar_well_old[nw*XvarWell + w] - dx1_limited,1e5);
well_state.bhp()[w] = well_state.wellSolutions()[nw*XvarWell + w];
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
if (wells().type[w]==PRODUCER) {
const double* distr = well_controls_iget_distr(wc, current);
double F_target = 0.0;
for (int p = 0; p < np; ++p) {
F_target += distr[p] * F[p];
}
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate / F_target;
}
} else {
for (int p = 0; p < np; ++p) {
well_state.wellRates()[w*np + p] = wells().comp_frac[np*w + p] * target_rate;
}
}
} else { // RESERVOIR_RATE
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np*w + p] = F[p] * target_rate;
}
}
}
break;
} // end of switch (well_controls_iget_type(wc, current))
} // end of for (int w = 0; w < nw; ++w)
// for the wells having a THP constaint, we should update their thp value
// If it is under THP control, it will be set to be the target value. Otherwise,
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
const int nwc = well_controls_get_num(wc);
// Looping over all controls until we find a THP constraint
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(wc, ctrl_index) == THP) {
// the current control
const int current = well_state.currentControls()[w];
// If under THP control at the moment
if (current == ctrl_index) {
const double thp_target = well_controls_iget_target(wc, current);
well_state.thp()[w] = thp_target;
} else { // otherwise we calculate the thp from the bhp value
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const double alq = well_controls_iget_alq(wc, ctrl_index);
const int table_id = well_controls_iget_vfp(wc, ctrl_index);
const WellType& well_type = wells().type[w];
const int perf = wells().well_connpos[w]; //first perforation.
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(),
wellPerforationDensities()[perf], gravity_);
const double bhp = well_state.bhp()[w];
well_state.thp()[w] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
} else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(),
wellPerforationDensities()[perf], gravity_);
const double bhp = well_state.bhp()[w];
well_state.thp()[w] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
} else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
}
// the THP control is found, we leave the loop now
break;
}
} // end of for loop for seaching THP constraints
} // end of for (int w = 0; w < nw; ++w)
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
updateWellControls(WellState& xw) const
{
if( !localWellsActive() ) return ;
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
// keeping a copy of the current controls, to see whether control changes later.
std::vector<int> old_control_index(nw, 0);
for (int w = 0; w < nw; ++w) {
old_control_index[w] = xw.currentControls()[w];
}
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
#pragma omp parallel for schedule(dynamic)
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (wellhelpers::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wells().type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
xw.currentControls()[w] = ctrl_index;
current = xw.currentControls()[w];
well_controls_set_current( wc, current);
}
// update whether well is under group control
if (wellCollection()->groupControlActive()) {
// get well node in the well collection
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
// update whehter the well is under group control or individual control
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
}
// upate the well targets following group controls
if (wellCollection()->groupControlActive()) {
applyVREPGroupControl(xw);
wellCollection()->updateWellTargets(xw.wellRates());
}
// the new well control indices after all the related updates,
std::vector<int> updated_control_index(nw, 0);
for (int w = 0; w < nw; ++w) {
updated_control_index[w] = xw.currentControls()[w];
}
// checking whether control changed
wellhelpers::WellSwitchingLogger logger;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells().ctrls[w];
if (updated_control_index[w] != old_control_index[w]) {
logger.wellSwitched(wells().name[w],
well_controls_iget_type(wc, old_control_index[w]),
well_controls_iget_type(wc, updated_control_index[w]));
}
if (updated_control_index[w] != old_control_index[w] || well_collection_->groupControlActive()) {
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
updateListEconLimited(const Schedule& schedule,
const int current_step,
const Wells* wells_struct,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
// With no wells (on process) wells_struct is a null pointer
const int nw = (wells_struct)? wells_struct->number_of_wells : 0;
for (int w = 0; w < nw; ++w) {
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
const std::string& well_name = wells_struct->name[w];
const Well* well_ecl = schedule.getWell(well_name);
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
// economic limits only apply for production wells.
if (wells_struct->type[w] != PRODUCER) {
continue;
}
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
continue;
}
// for the moment, we only handle rate limits, not handling potential limits
// the potential limits should not be difficult to add
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
if (quantity_limit == WellEcon::POTN) {
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
+ std::string("All the limits will be evaluated based on RATE. ");
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
}
const WellMapType& well_map = well_state.wellMap();
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
assert(i_well != well_map.end()); // should always be found?
const WellMapEntryType& map_entry = i_well->second;
const int well_number = map_entry[0];
if (econ_production_limits.onAnyRateLimit()) {
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
if (well_ecl->getAutomaticShutIn()) {
list_econ_limited.addShutWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
OpmLog::info(msg);
} else {
list_econ_limited.addStoppedWell(well_name);
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
OpmLog::info(msg);
}
// the well is closed, not need to check other limits
continue;
}
// checking for ratio related limits, mostly all kinds of ratio.
bool ratio_limits_violated = false;
RatioCheckTuple ratio_check_return;
if (econ_production_limits.onAnyRatioLimit()) {
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
ratio_limits_violated = std::get<0>(ratio_check_return);
}
if (ratio_limits_violated) {
const bool last_connection = std::get<1>(ratio_check_return);
const int worst_offending_connection = std::get<2>(ratio_check_return);
const int perf_start = map_entry[1];
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
+ well_name + std::string(" will be closed due to economic limit");
OpmLog::info(msg);
if (last_connection) {
list_econ_limited.addShutWell(well_name);
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
OpmLog::info(msg2);
}
}
} // for (int w = 0; w < nw; ++w)
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf,
const std::vector<double>& depth_perf,
const double grav)
{
// Compute densities
well_perforation_densities_ =
WellDensitySegmented::computeConnectionDensities(
wells(), xw, phase_usage_,
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
// Compute pressure deltas
well_perforation_pressure_diffs_ =
WellDensitySegmented::computeConnectionPressureDelta(
wells(), depth_perf, well_perforation_densities_, grav);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
template <typename Simulator>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) const
{
// number of wells and phases
const int nw = wells().number_of_wells;
const int np = wells().number_of_phases;
well_potentials.resize(nw * np, 0.0);
for (int w = 0; w < nw; ++w) {
// bhp needs to be determined for the well potential calculation
// There can be more than one BHP/THP constraints.
// TODO: there is an option to ignore the THP limit when calculating well potentials,
// we are not handling it for the moment, while easy to incorporate
// the bhp will be used to compute well potentials
double bhp;
// type of the well, INJECTOR or PRODUCER
const WellType& well_type = wells().type[w];
// initial bhp value, making the value not usable
switch(well_type) {
case INJECTOR:
bhp = std::numeric_limits<double>::max();
break;
case PRODUCER:
bhp = -std::numeric_limits<double>::max();
break;
default:
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[w]);
}
// the well controls
const WellControls* well_control = wells().ctrls[w];
// The number of the well controls/constraints
const int nwc = well_controls_get_num(well_control);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
// finding a BHP constraint
if (well_controls_iget_type(well_control, ctrl_index) == BHP) {
// get the bhp constraint value, it should always be postive assummingly
const double bhp_target = well_controls_iget_target(well_control, ctrl_index);
switch(well_type) {
case INJECTOR: // using the lower bhp contraint from Injectors
if (bhp_target < bhp) {
bhp = bhp_target;
}
break;
case PRODUCER:
if (bhp_target > bhp) {
bhp = bhp_target;
}
break;
default:
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[w]);
} // end of switch
}
// finding a THP constraint
if (well_controls_iget_type(well_control, ctrl_index) == THP) {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(well_control, ctrl_index);
const double& thp = well_controls_iget_target(well_control, ctrl_index);
const double& alq = well_controls_iget_alq(well_control, ctrl_index);
// Calculating the BHP value based on THP
const int first_perf = wells().well_connpos[w]; //first perforation
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities()[first_perf], gravity_);
const double bhp_calculated = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
// apply the strictest of the bhp controlls i.e. smallest bhp for injectors
if (bhp_calculated < bhp) {
bhp = bhp_calculated;
}
}
else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
wellPerforationDensities()[first_perf], gravity_);
const double bhp_calculated = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
// apply the strictest of the bhp controlls i.e. largest bhp for producers
if (bhp_calculated > bhp) {
bhp = bhp_calculated;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
// there should be always some avaible bhp/thp constraints there
assert(std::abs(bhp) != std::numeric_limits<double>::max());
// Should we consider crossflow when calculating well potentionals?
const bool allow_cf = allow_cross_flow(w, ebosSimulator);
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const int cell_index = wells().well_cells[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_index, /*timeIdx=*/ 0));
std::vector<EvalWell> well_potentials_perf(np, 0.0);
std::vector<EvalWell> mob(np, 0.0);
getMobility(ebosSimulator, perf, cell_index, mob);
computeWellFlux(w, wells().WI[perf], intQuants.fluidState(), mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, well_potentials_perf);
for(int p = 0; p < np; ++p) {
well_potentials[w * np + p] += std::abs(well_potentials_perf[p].value());
}
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext>
template<typename Simulator>
void
StandardWellsDense<FluidSystem, BlackoilIndices>::
prepareTimeStep(const Simulator& ebos_simulator,
WellState& well_state)
{
if (well_collection_->groupControlActive()) {
// calculate the well potentials
// two functions will probably be merged in the final version
// and also the well potentials related parts in well state.
if (param_.compute_well_potentials_) {
// the following part should be made a function
const int nw = wells().number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
const int control = well_controls_get_current(wc);
well_state.currentControls()[w] = control;
// TODO: when we under defaulted BHP value here, it is not
// wise to update the WellState with this target.
// It should only be the case with `GRUP` while we have not
// applied group control.
// updateWellStateWithTarget(wc, control, w, well_state);
}
setWellVariables(well_state);
computeWellConnectionPressures(ebos_simulator, well_state);
// To store well potentials for each well
std::vector<double> well_potentials;
computeWellPotentials(ebos_simulator, well_state, well_potentials);
// update/setup guide rates for each well based on the well_potentials
well_collection_->setGuideRatesWithPotentials(wellsPointer(), phase_usage_, well_potentials);
}
applyVREPGroupControl(well_state);
if (!wellCollection()->groupControlApplied()) {
wellCollection()->applyGroupControls();
} else {
wellCollection()->updateWellTargets(well_state.wellRates());
}
}
// since the controls are all updated, we should update well_state accordingly
const int nw = wells().number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells().ctrls[w];
const int control = well_controls_get_current(wc);
well_state.currentControls()[w] = control;
updateWellStateWithTarget(wc, control, w, well_state);
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext>
WellCollection*
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellCollection() const
{
return well_collection_;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
const std::vector<double>&
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellPerfEfficiencyFactors() const
{
return well_perforation_efficiency_factors_;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
const int nw = wells().number_of_wells;
for (int w = 0; w < nw; ++w) {
const std::string well_name = wells().name[w];
const WellNode& well_node = wellCollection()->findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
// assign the efficiency factor to each perforation related.
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w + 1]; ++perf) {
well_perforation_efficiency_factors_[perf] = well_efficiency_factor;
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
computeWellVoidageRates(const WellState& well_state,
std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const
{
if ( !localWellsActive() ) {
return;
}
// TODO: for now, we store the voidage rates for all the production wells.
// For injection wells, the rates are stored as zero.
// We only store the conversion coefficients for all the injection wells.
// Later, more delicate model will be implemented here.
// And for the moment, group control can only work for serial running.
const int nw = well_state.numWells();
const int np = well_state.numPhases();
// we calculate the voidage rate for each well, that means the sum of all the phases.
well_voidage_rates.resize(nw, 0);
// store the conversion coefficients, while only for the use of injection wells.
voidage_conversion_coeffs.resize(nw * np, 1.0);
std::vector<double> well_rates(np, 0.0);
std::vector<double> convert_coeff(np, 1.0);
for (int w = 0; w < nw; ++w) {
const bool is_producer = wells().type[w] == PRODUCER;
// not sure necessary to change all the value to be positive
if (is_producer) {
std::transform(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin(), std::negate<double>());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_->calcCoeff(well_rates, fipreg, convert_coeff);
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
convert_coeff.begin(), 0.0);
} else {
// TODO: Not sure whether will encounter situation with all zero rates
// and whether it will cause problem here.
std::copy(well_state.wellRates().begin() + np * w,
well_state.wellRates().begin() + np * (w + 1),
well_rates.begin());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rate_converter_->calcCoeff(well_rates, fipreg, convert_coeff);
std::copy(convert_coeff.begin(), convert_coeff.end(),
voidage_conversion_coeffs.begin() + np * w);
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
applyVREPGroupControl(WellState& well_state) const
{
if ( wellCollection()->havingVREPGroups() ) {
std::vector<double> well_voidage_rates;
std::vector<double> voidage_conversion_coeffs;
computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs);
wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
// for the wells under group control, update the currentControls for the well_state
for (const WellNode* well_node : wellCollection()->getLeafNodes()) {
if (well_node->isInjector() && !well_node->individualControl()) {
const int well_index = well_node->selfIndex();
well_state.currentControls()[well_index] = well_node->groupControlIndex();
}
}
}
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::EvalWell
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
getBhp(const int wellIdx) const {
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == BHP) {
EvalWell bhp = 0.0;
const double target_rate = well_controls_get_current_target(wc);
bhp.setValue(target_rate);
return bhp;
} else if (well_controls_get_current_type(wc) == THP) {
const int control = well_controls_get_current(wc);
const double thp = well_controls_get_current_target(wc);
const double alq = well_controls_iget_alq(wc, control);
const int table_id = well_controls_iget_vfp(wc, control);
EvalWell aqua = 0.0;
EvalWell liquid = 0.0;
EvalWell vapour = 0.0;
EvalWell bhp = 0.0;
double vfp_ref_depth = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = getQs(wellIdx, pu.phase_pos[ Water]);
}
if (active_[ Oil ]) {
liquid = getQs(wellIdx, pu.phase_pos[ Oil ]);
}
if (active_[ Gas ]) {
vapour = getQs(wellIdx, pu.phase_pos[ Gas ]);
}
if (wells().type[wellIdx] == INJECTOR) {
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
} else {
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
}
// pick the density in the top layer
const int perf = wells().well_connpos[wellIdx];
const double rho = well_perforation_densities_[perf];
const double dp = wellhelpers::computeHydrostaticCorrection(wells(), wellIdx, vfp_ref_depth, rho, gravity_);
bhp -= dp;
return bhp;
}
const int nw = wells().number_of_wells;
return wellVariables_[nw*XvarWell + wellIdx];
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::EvalWell
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
getQs(const int wellIdx, const int phaseIdx) const
{
EvalWell qs = 0.0;
const WellControls* wc = wells().ctrls[wellIdx];
const int np = wells().number_of_phases;
const int nw = wells().number_of_wells;
const double target_rate = well_controls_get_current_target(wc);
// TODO: the formulation for the injectors decides it only work with single phase
// surface rate injection control. Improvement will be required.
if (wells().type[wellIdx] == INJECTOR) {
const double comp_frac = wells().comp_frac[np*wellIdx + phaseIdx];
if (comp_frac == 0.0) {
return qs;
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return wellVariables_[nw*XvarWell + wellIdx];
}
qs.setValue(target_rate);
return qs;
}
// Producers
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
return wellVariables_[nw*XvarWell + wellIdx] * wellVolumeFractionScaled(wellIdx,phaseIdx);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
// checking how many phases are included in the rate control
// to decide wheter it is a single phase rate control or not
const double* distr = well_controls_get_current_distr(wc);
int num_phases_under_rate_control = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
num_phases_under_rate_control += 1;
}
}
// there should be at least one phase involved
assert(num_phases_under_rate_control > 0);
// when it is a single phase rate limit
if (num_phases_under_rate_control == 1) {
// looking for the phase under control
int phase_under_control = -1;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
phase_under_control = phase;
break;
}
}
assert(phase_under_control >= 0);
if (phaseIdx == phase_under_control) {
qs.setValue(target_rate);
return qs;
}
// TODO: not sure why the single phase under control will have near zero fraction
const double eps = 1e-6;
if (wellVolumeFractionScaled(wellIdx, phase_under_control) < eps) {
return qs;
}
return (target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx) / wellVolumeFractionScaled(wellIdx, phase_under_control));
}
// when it is a combined two phase rate limit, such like LRAT
// we neec to calculate the rate for the certain phase
if (num_phases_under_rate_control == 2) {
EvalWell combined_volume_fraction = 0.;
for (int p = 0; p < np; ++p) {
if (distr[p] == 1.0) {
combined_volume_fraction += wellVolumeFractionScaled(wellIdx, p);
}
}
return (target_rate * wellVolumeFractionScaled(wellIdx,phaseIdx) / combined_volume_fraction);
}
// TODO: three phase surface rate control is not tested yet
if (num_phases_under_rate_control == 3) {
return target_rate * wellSurfaceVolumeFraction(wellIdx, phaseIdx);
}
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
// ReservoirRate
return target_rate * wellVolumeFractionScaled(wellIdx, phaseIdx);
} else {
OPM_THROW(std::logic_error, "Unknown control type for well " << wells().name[wellIdx]);
}
// avoid warning of condition reaches end of non-void function
return qs;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::EvalWell
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellVolumeFraction(const int wellIdx, const int phaseIdx) const
{
const int nw = wells().number_of_wells;
if (phaseIdx == Water) {
return wellVariables_[WFrac * nw + wellIdx];
}
if (phaseIdx == Gas) {
return wellVariables_[GFrac * nw + wellIdx];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (active_[Water]) {
well_fraction -= wellVariables_[WFrac * nw + wellIdx];
}
if (active_[Gas]) {
well_fraction -= wellVariables_[GFrac * nw + wellIdx];
}
return well_fraction;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::EvalWell
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellVolumeFractionScaled(const int wellIdx, const int phaseIdx) const
{
const WellControls* wc = wells().ctrls[wellIdx];
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
const double* distr = well_controls_get_current_distr(wc);
if (distr[phaseIdx] > 0.) {
return wellVolumeFraction(wellIdx, phaseIdx) / distr[phaseIdx];
} else {
// TODO: not sure why return EvalWell(0.) causing problem here
// Probably due to the wrong Jacobians.
return wellVolumeFraction(wellIdx, phaseIdx);
}
}
std::vector<double> g = {1,1,0.01};
return (wellVolumeFraction(wellIdx, phaseIdx) / g[phaseIdx]);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::EvalWell
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
wellSurfaceVolumeFraction(const int well_index, const int phase) const
{
EvalWell sum_volume_fraction_scaled = 0.;
const int np = wells().number_of_phases;
for (int p = 0; p < np; ++p) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(well_index, p);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(well_index, phase) / sum_volume_fraction_scaled;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
bool
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const int well_number) const
{
const Opm::PhaseUsage& pu = phase_usage_;
const int np = well_state.numPhases();
if (econ_production_limits.onMinOilRate()) {
assert(active_[Oil]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert(active_[Gas]);
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert(active_[Oil]);
assert(active_[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::RatioCheckTuple
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
// TODO: not sure how to define the worst-offending connection when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending connection separately.
// Among the worst-offending connections, we use the one has the biggest violation
// extent.
bool any_limit_violated = false;
bool last_connection = false;
int worst_offending_connection = INVALIDCONNECTION;
double violation_extent = -1.0;
if (econ_production_limits.onMaxWaterCut()) {
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
bool water_cut_violated = std::get<0>(water_cut_return);
if (water_cut_violated) {
any_limit_violated = true;
const double violation_extent_water_cut = std::get<3>(water_cut_return);
if (violation_extent_water_cut > violation_extent) {
violation_extent = violation_extent_water_cut;
worst_offending_connection = std::get<2>(water_cut_return);
last_connection = std::get<1>(water_cut_return);
}
}
}
if (econ_production_limits.onMaxGasOilRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
}
if (econ_production_limits.onMaxWaterGasRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (any_limit_violated) {
assert(worst_offending_connection >=0);
assert(violation_extent > 1.);
}
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
typename StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::RatioCheckTuple
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const
{
bool water_cut_limit_violated = false;
int worst_offending_connection = INVALIDCONNECTION;
bool last_connection = false;
double violation_extent = -1.0;
const int np = well_state.numPhases();
const Opm::PhaseUsage& pu = phase_usage_;
const int well_number = map_entry[0];
assert(active_[Oil]);
assert(active_[Water]);
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
double water_cut;
if (std::abs(liquid_rate) != 0.) {
water_cut = water_rate / liquid_rate;
} else {
water_cut = 0.0;
}
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
if (water_cut > max_water_cut_limit) {
water_cut_limit_violated = true;
}
if (water_cut_limit_violated) {
// need to handle the worst_offending_connection
const int perf_start = map_entry[1];
const int perf_number = map_entry[2];
std::vector<double> water_cut_perf(perf_number);
for (int perf = 0; perf < perf_number; ++perf) {
const int i_perf = perf_start + perf;
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
if (std::abs(liquid_perf_rate) != 0.) {
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
} else {
water_cut_perf[perf] = 0.;
}
}
last_connection = (perf_number == 1);
if (last_connection) {
worst_offending_connection = 0;
violation_extent = water_cut_perf[0] / max_water_cut_limit;
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
double max_water_cut_perf = 0.;
for (int perf = 0; perf < perf_number; ++perf) {
if (water_cut_perf[perf] > max_water_cut_perf) {
worst_offending_connection = perf;
max_water_cut_perf = water_cut_perf[perf];
}
}
assert(max_water_cut_perf != 0.);
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
violation_extent = max_water_cut_perf / max_water_cut_limit;
}
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
}
template<typename FluidSystem, typename BlackoilIndices, typename ElementContext, typename MaterialLaw>
void
StandardWellsDense<FluidSystem, BlackoilIndices, ElementContext, MaterialLaw>::
updateWellStateWithTarget(const WellControls* wc,
const int current,
const int well_index,
WellState& xw) const
{
// number of phases
const int np = wells().number_of_phases;
// Updating well state and primary variables.
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[well_index] = target;
break;
case THP: {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
const Opm::PhaseUsage& pu = phase_usage_;
if (active_[ Water ]) {
aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
}
const int vfp = well_controls_iget_vfp(wc, current);
const double& thp = well_controls_iget_target(wc, current);
const double& alq = well_controls_iget_alq(wc, current);
//Set *BHP* target by calculating bhp from THP
const WellType& well_type = wells().type[well_index];
// pick the density in the top layer
const int perf = wells().well_connpos[well_index];
const double rho = well_perforation_densities_[perf];
if (well_type == INJECTOR) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type == PRODUCER) {
const double dp = wellhelpers::computeHydrostaticCorrection(
wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
rho, gravity_);
xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
}
case RESERVOIR_RATE:
// No direct change to any observable quantity at
// surface condition. In this case, use existing
// flow rates as initial conditions as reservoir
// rate acts only in aggregate.
// break;
case SURFACE_RATE:
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
const WellType& well_type = wells().type[well_index];
if (well_type == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.) {
xw.wellRates()[np*well_index + phase] = target / distr[phase];
} else {
xw.wellRates()[np * well_index + phase] = 0.;
}
}
} else if (well_type == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
double orignal_rates_under_phase_control = 0.0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
orignal_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
}
}
if (orignal_rates_under_phase_control != 0.0 ) {
double scaling_factor = target / orignal_rates_under_phase_control;
for (int phase = 0; phase < np; ++phase) {
xw.wellRates()[np * well_index + phase] *= scaling_factor;
}
} else { // scaling factor is not well defied when orignal_rates_under_phase_control is zero
// separating targets equally between phases under control
const double target_rate_devided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
xw.wellRates()[np * well_index + phase] = target_rate_devided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
xw.wellRates()[np * well_index + phase] = target_rate_devided;
}
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
} // end of switch
std::vector<double> g = {1.0, 1.0, 0.01};
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
for (int phase = 0; phase < np; ++phase) {
g[phase] = distr[phase];
}
}
// the number of wells
const int nw = wells().number_of_wells;
switch (well_controls_iget_type(wc, current)) {
case THP:
case BHP: {
const WellType& well_type = wells().type[well_index];
xw.wellSolutions()[nw*XvarWell + well_index] = 0.0;
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * wells().comp_frac[np*well_index + p];
}
} else {
for (int p = 0; p < np; ++p) {
xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p];
}
}
break;
}
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index];
break;
} // end of switch
double tot_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
tot_well_rate += g[p] * xw.wellRates()[np*well_index + p];
}
if(std::abs(tot_well_rate) > 0) {
if (active_[ Water ]) {
xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate;
}
if (active_[ Gas ]) {
xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * xw.wellRates()[np*well_index + Gas] / tot_well_rate ;
}
} else {
const WellType& well_type = wells().type[well_index];
if (well_type == INJECTOR) {
// only single phase injection handled
if (active_[Water]) {
if (distr[Water] > 0.0) {
xw.wellSolutions()[WFrac * nw + well_index] = 1.0;
} else {
xw.wellSolutions()[WFrac * nw + well_index] = 0.0;
}
}
if (active_[Gas]) {
if (distr[Gas] > 0.0) {
xw.wellSolutions()[GFrac * nw + well_index] = 1.0;
} else {
xw.wellSolutions()[GFrac * nw + well_index] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (well_type == PRODUCER) { // producers
if (active_[Water]) {
xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np;
}
if (active_[Gas]) {
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
} // namespace Opm