mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-23 16:00:01 -06:00
7a77f28b71
In particular, form constant flux aquifer objects from the restart step's collection if available and properly initialise their total produced volume.
237 lines
7.1 KiB
C++
237 lines
7.1 KiB
C++
/*
|
|
Copyright (C) 2023 Equinor
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AQUIFERCONSTANTFLUX_HPP
|
|
#define OPM_AQUIFERCONSTANTFLUX_HPP
|
|
|
|
#include <opm/simulators/aquifers/AquiferInterface.hpp>
|
|
|
|
#include <opm/input/eclipse/EclipseState/Aquifer/Aquancon.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Aquifer/AquiferFlux.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/material/common/MathToolbox.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <numeric>
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
namespace Opm {
|
|
|
|
template<typename TypeTag>
|
|
class AquiferConstantFlux : public AquiferInterface<TypeTag>
|
|
{
|
|
public:
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
static constexpr int numEq = BlackoilIndices::numEq;
|
|
using Eval = DenseAd::Evaluation<double, /*size=*/numEq>;
|
|
|
|
AquiferConstantFlux(const std::vector<Aquancon::AquancCell>& connections,
|
|
const Simulator& ebos_simulator,
|
|
const SingleAquiferFlux& aquifer)
|
|
: AquiferInterface<TypeTag>(aquifer.id, ebos_simulator)
|
|
, connections_ (connections)
|
|
, aquifer_data_ (aquifer)
|
|
, connection_flux_ (connections_.size(), Eval{0})
|
|
{
|
|
this->total_face_area_ = this->initializeConnections();
|
|
}
|
|
|
|
static AquiferConstantFlux serializationTestObject(const Simulator& ebos_simulator)
|
|
{
|
|
AquiferConstantFlux<TypeTag> result({}, ebos_simulator, {});
|
|
result.cumulative_flux_ = 1.0;
|
|
|
|
return result;
|
|
}
|
|
|
|
virtual ~AquiferConstantFlux() = default;
|
|
|
|
void computeFaceAreaFraction(const std::vector<double>& total_face_area) override
|
|
{
|
|
assert (total_face_area.size() >= static_cast<std::vector<double>::size_type>(this->aquiferID()));
|
|
|
|
this->area_fraction_ = this->totalFaceArea()
|
|
/ total_face_area[this->aquiferID() - 1];
|
|
}
|
|
|
|
double totalFaceArea() const override
|
|
{
|
|
return this->total_face_area_;
|
|
}
|
|
|
|
void updateAquifer(const SingleAquiferFlux& aquifer)
|
|
{
|
|
aquifer_data_ = aquifer;
|
|
}
|
|
|
|
void initFromRestart(const data::Aquifers& aquiferSoln) override
|
|
{
|
|
auto xaqPos = aquiferSoln.find(this->aquiferID());
|
|
if (xaqPos == aquiferSoln.end()) {
|
|
return;
|
|
}
|
|
|
|
this->cumulative_flux_ = this->area_fraction_ * xaqPos->second.volume;
|
|
}
|
|
|
|
void initialSolutionApplied() override
|
|
{}
|
|
|
|
void beginTimeStep() override
|
|
{}
|
|
|
|
void endTimeStep() override
|
|
{
|
|
this->flux_rate_ = this->totalFluxRate();
|
|
this->cumulative_flux_ +=
|
|
this->flux_rate_ * this->ebos_simulator_.timeStepSize();
|
|
}
|
|
|
|
data::AquiferData aquiferData() const override
|
|
{
|
|
data::AquiferData data;
|
|
|
|
data.aquiferID = this->aquifer_data_.id;
|
|
|
|
// Pressure for constant flux aquifer is 0
|
|
data.pressure = 0.0;
|
|
data.fluxRate = this->totalFluxRate();
|
|
|
|
data.volume = this->cumulative_flux_;
|
|
|
|
// not totally sure whether initPressure matters
|
|
data.initPressure = 0.0;
|
|
|
|
return data;
|
|
}
|
|
|
|
void addToSource(RateVector& rates,
|
|
const unsigned cellIdx,
|
|
[[maybe_unused]] const unsigned timeIdx) override
|
|
{
|
|
const int idx = this->cellToConnectionIdx_[cellIdx];
|
|
if (idx < 0) {
|
|
return;
|
|
}
|
|
|
|
const auto& model = this->ebos_simulator_.model();
|
|
|
|
const auto fw = this->aquifer_data_.flux;
|
|
|
|
this->connection_flux_[idx] = fw * this->connections_[idx].effective_facearea;
|
|
|
|
rates[BlackoilIndices::conti0EqIdx + compIdx_()]
|
|
+= this->connection_flux_[idx] / model.dofTotalVolume(cellIdx);
|
|
}
|
|
|
|
template<class Serializer>
|
|
void serializeOp(Serializer& serializer)
|
|
{
|
|
serializer(cumulative_flux_);
|
|
}
|
|
|
|
bool operator==(const AquiferConstantFlux& rhs) const
|
|
{
|
|
return this->cumulative_flux_ == rhs.cumulative_flux_;
|
|
}
|
|
|
|
private:
|
|
const std::vector<Aquancon::AquancCell>& connections_;
|
|
|
|
SingleAquiferFlux aquifer_data_;
|
|
std::vector<Eval> connection_flux_{};
|
|
std::vector<int> cellToConnectionIdx_{};
|
|
double flux_rate_{};
|
|
double cumulative_flux_{};
|
|
double total_face_area_{0.0};
|
|
double area_fraction_{1.0};
|
|
|
|
double initializeConnections()
|
|
{
|
|
auto connected_face_area = 0.0;
|
|
|
|
this->cellToConnectionIdx_
|
|
.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
|
|
|
for (std::size_t idx = 0; idx < this->connections_.size(); ++idx) {
|
|
const auto global_index = this->connections_[idx].global_index;
|
|
const int cell_index = this->ebos_simulator_.vanguard()
|
|
.compressedIndexForInterior(global_index);
|
|
|
|
if (cell_index < 0) {
|
|
continue;
|
|
}
|
|
|
|
this->cellToConnectionIdx_[cell_index] = idx;
|
|
|
|
connected_face_area += this->connections_[idx].effective_facearea;
|
|
}
|
|
|
|
// TODO: At the moment, we are using the effective_facearea from the
|
|
// parser. Should we update the facearea here if the grid changed
|
|
// during the preprocessing?
|
|
|
|
return connected_face_area;
|
|
}
|
|
|
|
double computeFaceAreaFraction(const double connected_face_area) const
|
|
{
|
|
const auto tot_face_area = this->ebos_simulator_.vanguard()
|
|
.grid().comm().sum(connected_face_area);
|
|
|
|
return (tot_face_area > 0.0)
|
|
? connected_face_area / tot_face_area
|
|
: 0.0;
|
|
}
|
|
|
|
// TODO: this is a function from AquiferAnalytical
|
|
int compIdx_() const
|
|
{
|
|
if (this->co2store_())
|
|
return FluidSystem::oilCompIdx;
|
|
|
|
return FluidSystem::waterCompIdx;
|
|
}
|
|
|
|
double totalFluxRate() const
|
|
{
|
|
return std::accumulate(this->connection_flux_.begin(),
|
|
this->connection_flux_.end(), 0.0,
|
|
[](const double rate, const auto& q)
|
|
{
|
|
return rate + getValue(q);
|
|
});
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif //OPM_AQUIFERCONSTANTFLUX_HPP
|