opm-simulators/ebos/eclthresholdpressure.hh
2019-09-05 17:14:38 +02:00

405 lines
16 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclThresholdPressure
*/
#ifndef EWOMS_ECL_THRESHOLD_PRESSURE_HH
#define EWOMS_ECL_THRESHOLD_PRESSURE_HH
#include <ewoms/common/propertysystem.hh>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/GridProperty.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/Eqldims.hpp>
#include <opm/parser/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
#include <opm/parser/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/grid/common/gridenums.hh>
#include <dune/common/version.hh>
#include <array>
#include <vector>
#include <unordered_map>
BEGIN_PROPERTIES
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(Evaluation);
NEW_PROP_TAG(ElementContext);
NEW_PROP_TAG(FluidSystem);
NEW_PROP_TAG(EnableExperiments);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This class calculates the threshold pressure for grid faces according to the
* Eclipse Reference Manual.
*
* If the difference of the pressure potential between two cells is below the threshold
* pressure, the pressure potential difference is assumed to be zero, if it is larger
* than the threshold pressure, it is reduced by the threshold pressure.
*/
template <class TypeTag>
class EclThresholdPressure
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { enableExperiments = GET_PROP_VALUE(TypeTag, EnableExperiments) };
enum { numPhases = FluidSystem::numPhases };
public:
EclThresholdPressure(const Simulator& simulator)
: simulator_(simulator)
{
enableThresholdPressure_ = false;
}
/*!
* \brief Actually compute the threshold pressures over a face as a pre-compute step.
*/
void finishInit()
{
const auto& gridView = simulator_.gridView();
unsigned numElements = gridView.size(/*codim=*/0);
// this code assumes that the DOFs are the elements. (i.e., an
// ECFV spatial discretization with TPFA). if you try to use
// it with something else, you're currently out of luck,
// sorry!
assert(simulator_.model().numGridDof() == numElements);
const auto& vanguard = simulator_.vanguard();
const auto& eclState = vanguard.eclState();
const auto& simConfig = eclState.getSimulationConfig();
enableThresholdPressure_ = simConfig.useThresholdPressure();
if (!enableThresholdPressure_)
return;
numEquilRegions_ = eclState.getTableManager().getEqldims().getNumEquilRegions();
if (numEquilRegions_ > 0xff) {
// make sure that the index of an equilibration region can be stored in a
// single byte
throw std::runtime_error("The maximum number of supported equilibration regions is 255!");
}
// internalize the data specified using the EQLNUM keyword
const std::vector<int>& equilRegionData =
eclState.get3DProperties().getIntGridProperty("EQLNUM").getData();
elemEquilRegion_.resize(numElements, 0);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
int cartElemIdx = vanguard.cartesianIndex(elemIdx);
// ECL uses Fortran-style indices but we want C-style ones!
elemEquilRegion_[elemIdx] = equilRegionData[cartElemIdx] - 1;
}
/*
If this is a restart run the ThresholdPressure object will be active,
but it will *not* be properly initialized with numerical values. The
values must instead come from the THPRES vector in the restart file.
*/
if (simConfig.getThresholdPressure().restart())
return;
// allocate the array which specifies the threshold pressures
thpres_.resize(numEquilRegions_*numEquilRegions_, 0.0);
thpresDefault_.resize(numEquilRegions_*numEquilRegions_, 0.0);
computeDefaultThresholdPressures_();
applyExplicitThresholdPressures_();
}
/*!
* \brief Returns the theshold pressure [Pa] for the intersection between two elements.
*
* This is tailor made for the E100 threshold pressure mechanism and it is thus quite
* a hack: First of all threshold pressures in general are unphysical, and second,
* they should be different for the fluid phase but are not. Anyway, this seems to be
* E100's way of doing things, so we do it the same way.
*/
Scalar thresholdPressure(int elem1Idx, int elem2Idx) const
{
if (!enableThresholdPressure_)
return 0.0;
if (enableExperiments) {
// threshold pressure accross faults
if (!thpresftValues_.empty()) {
const auto& vanguard = simulator_.vanguard();
int cartElem1Idx = vanguard.cartesianIndex(elem1Idx);
int cartElem2Idx = vanguard.cartesianIndex(elem2Idx);
assert(0 <= cartElem1Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem1Idx);
assert(0 <= cartElem2Idx && static_cast<int>(cartElemFaultIdx_.size()) > cartElem2Idx);
int fault1Idx = cartElemFaultIdx_[cartElem1Idx];
int fault2Idx = cartElemFaultIdx_[cartElem2Idx];
if (fault1Idx != -1 && fault1Idx == fault2Idx)
// inside a fault there's no threshold pressure, even accross EQUIL
// regions.
return 0.0;
if (fault1Idx != fault2Idx) {
// TODO: which value if a cell is part of multiple faults? we take
// the maximum here.
Scalar val1 = (fault1Idx >= 0) ? thpresftValues_[fault1Idx] : 0.0;
Scalar val2 = (fault2Idx >= 0) ? thpresftValues_[fault2Idx] : 0.0;
return std::max(val1, val2);
}
}
}
// threshold pressure accross EQUIL regions
unsigned short equilRegion1Idx = elemEquilRegion_[elem1Idx];
unsigned short equilRegion2Idx = elemEquilRegion_[elem2Idx];
if (equilRegion1Idx == equilRegion2Idx)
return 0.0;
return thpres_[equilRegion1Idx*numEquilRegions_ + equilRegion2Idx];
}
/*!
* \brief Return the raw array with the threshold pressures
*
* This is used for the restart capability.
*/
const std::vector<Scalar>& data() const
{ return thpres_; }
/*!
* \brief Set the threshold pressures from a raw array
*
* This is used for the restart capability.
*/
void setFromRestart(const std::vector<Scalar>& values)
{ thpres_ = values; }
private:
// compute the defaults of the threshold pressures using the initial condition
void computeDefaultThresholdPressures_()
{
const auto& vanguard = simulator_.vanguard();
const auto& gridView = vanguard.gridView();
typedef Opm::MathToolbox<Evaluation> Toolbox;
// loop over the whole grid and compute the maximum gravity adjusted pressure
// difference between two EQUIL regions.
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
ElementContext elemCtx(simulator_);
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updateAll(elem);
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < stencil.numInteriorFaces(); ++ scvfIdx) {
const auto& face = stencil.interiorFace(scvfIdx);
unsigned i = face.interiorIndex();
unsigned j = face.exteriorIndex();
unsigned insideElemIdx = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
unsigned outsideElemIdx = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
unsigned equilRegionInside = elemEquilRegion_[insideElemIdx];
unsigned equilRegionOutside = elemEquilRegion_[outsideElemIdx];
if (equilRegionInside == equilRegionOutside)
// the current face is not at the boundary between EQUIL regions!
continue;
// don't include connections with negligible flow
const Evaluation& trans = simulator_.problem().transmissibility(elemCtx, i, j);
Scalar faceArea = face.area();
if (std::abs(faceArea*Opm::getValue(trans)) < 1e-18)
continue;
// determine the maximum difference of the pressure of any phase over the
// intersection
Scalar pth = 0.0;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
unsigned upIdx = extQuants.upstreamIndex(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, /*timeIdx=*/0);
if (up.mobility(phaseIdx) > 0.0) {
Scalar phaseVal = Toolbox::value(extQuants.pressureDifference(phaseIdx));
pth = std::max(pth, std::abs(phaseVal));
}
}
int offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
int offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpresDefault_[offset1] = std::max(thpresDefault_[offset1], pth);
thpresDefault_[offset2] = std::max(thpresDefault_[offset2], pth);
}
}
// make sure that the threshold pressures is consistent for parallel
// runs. (i.e. take the maximum of all processes)
for (unsigned i = 0; i < thpresDefault_.size(); ++i)
thpresDefault_[i] = gridView.comm().max(thpresDefault_[i]);
}
// internalize the threshold pressures which where explicitly specified via the
// THPRES keyword.
void applyExplicitThresholdPressures_()
{
const auto& vanguard = simulator_.vanguard();
const auto& gridView = vanguard.gridView();
const auto& elementMapper = simulator_.model().elementMapper();
const auto& eclState = simulator_.vanguard().eclState();
const auto& deck = simulator_.vanguard().deck();
const Opm::SimulationConfig& simConfig = eclState.getSimulationConfig();
const auto& thpres = simConfig.getThresholdPressure();
// set the threshold pressures for all EQUIL region boundaries which have a
// intersection in the grid
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// ignore boundary intersections for now (TODO?)
if (intersection.boundary())
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
unsigned insideElemIdx = elementMapper.index(inside);
unsigned outsideElemIdx = elementMapper.index(outside);
unsigned equilRegionInside = elemEquilRegion_[insideElemIdx];
unsigned equilRegionOutside = elemEquilRegion_[outsideElemIdx];
if (thpres.hasRegionBarrier(equilRegionInside + 1, equilRegionOutside + 1)) {
Scalar pth = 0.0;
if (thpres.hasThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1)) {
// threshold pressure explicitly specified
pth = thpres.getThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1);
}
else {
// take the threshold pressure from the initial condition
unsigned offset = equilRegionInside*numEquilRegions_ + equilRegionOutside;
pth = thpresDefault_[offset];
}
unsigned offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
unsigned offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpres_[offset1] = pth;
thpres_[offset2] = pth;
}
}
}
if (enableExperiments) {
// apply threshold pressures accross faults (experimental!)
if (deck.hasKeyword("THPRESFT"))
extractThpresft_(deck.getKeyword("THPRESFT"));
}
}
void extractThpresft_(const Opm::DeckKeyword& thpresftKeyword)
{
// retrieve the faults collection.
const Opm::EclipseState& eclState = simulator_.vanguard().eclState();
const Opm::FaultCollection& faults = eclState.getFaults();
// extract the multipliers from the deck keyword
int numFaults = faults.size();
int numCartesianElem = eclState.getInputGrid().getCartesianSize();
thpresftValues_.resize(numFaults, -1.0);
cartElemFaultIdx_.resize(numCartesianElem, -1);
for (size_t recordIdx = 0; recordIdx < thpresftKeyword.size(); ++ recordIdx) {
const Opm::DeckRecord& record = thpresftKeyword.getRecord(recordIdx);
const std::string& faultName = record.getItem("FAULT_NAME").getTrimmedString(0);
Scalar thpresValue = record.getItem("VALUE").getSIDouble(0);
for (size_t faultIdx = 0; faultIdx < faults.size(); faultIdx++) {
auto& fault = faults.getFault(faultIdx);
if (fault.getName() != faultName)
continue;
thpresftValues_[faultIdx] = thpresValue;
for (const Opm::FaultFace& face: fault)
// "face" is a misnomer because the object describes a set of cell
// indices, but we go with the conventions of the parser here...
for (size_t cartElemIdx: face)
cartElemFaultIdx_[cartElemIdx] = faultIdx;
}
}
}
const Simulator& simulator_;
std::vector<Scalar> thpresDefault_;
std::vector<Scalar> thpres_;
unsigned numEquilRegions_;
std::vector<unsigned char> elemEquilRegion_;
// threshold pressure accross faults. EXPERIMENTAL!
std::vector<Scalar> thpresftValues_;
std::vector<int> cartElemFaultIdx_;
bool enableThresholdPressure_;
};
} // namespace Opm
#endif