opm-simulators/opm/autodiff/BlackoilModelBase.hpp
Atgeirr Flø Rasmussen c96a33124c Refactor addWellEq().
The method has been split in three parts:
        computeWellFlux(const SolutionState& state,
                        const std::vector<ADB>& mob_perfcells,
                        const std::vector<ADB>& b_perfcells,
                        V& aliveWells,
                        std::vector<ADB>& cq_s);

        void
        updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
                                         const SolutionState& state,
                                         WellState& xw);

        void
        addWellFluxEq(const std::vector<ADB>& cq_s,
                      const SolutionState& state);

This reduces the function length, although most of the content of addWellEq()
now is in computeWellFlux(), so that function is still quite long. It also
allows us to use smaller sets of function arguments, which makes methods easier
to understand.

Finally, it makes it easier to create derived models with custom behaviour.
2015-06-22 11:34:10 +02:00

506 lines
20 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Statoil ASA.
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMODELBASE_HEADER_INCLUDED
#define OPM_BLACKOILMODELBASE_HEADER_INCLUDED
#include <cassert>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <array>
struct Wells;
namespace Opm {
namespace parameter { class ParameterGroup; }
class DerivedGeology;
class RockCompressibility;
class NewtonIterationBlackoilInterface;
/// Struct for containing iteration variables.
struct DefaultBlackoilSolutionState
{
typedef AutoDiffBlock<double> ADB;
explicit DefaultBlackoilSolutionState(const int np)
: pressure ( ADB::null())
, temperature( ADB::null())
, saturation(np, ADB::null())
, rs ( ADB::null())
, rv ( ADB::null())
, qs ( ADB::null())
, bhp ( ADB::null())
, canonical_phase_pressures(3, ADB::null())
{
}
ADB pressure;
ADB temperature;
std::vector<ADB> saturation;
ADB rs;
ADB rv;
ADB qs;
ADB bhp;
// Below are quantities stored in the state for optimization purposes.
std::vector<ADB> canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active.
};
/// Traits to encapsulate the types used by classes using or
/// extending this model. Forward declared here, must be
/// specialised for each concrete model class.
template <class ConcreteModel>
struct ModelTraits;
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
/// \tparam Grid UnstructuredGrid or CpGrid.
/// \tparam Implementation Provides concrete state types.
template<class Grid, class Implementation>
class BlackoilModelBase
{
public:
// --------- Types and enums ---------
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef typename ModelTraits<Implementation>::ReservoirState ReservoirState;
typedef typename ModelTraits<Implementation>::WellState WellState;
typedef typename ModelTraits<Implementation>::ModelParameters ModelParameters;
typedef typename ModelTraits<Implementation>::SolutionState SolutionState;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
/// \param[in] has_disgas turn on dissolved gas
/// \param[in] has_vapoil turn on vaporized oil feature
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelBase(const ModelParameters& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output);
/// \brief Set threshold pressures that prevent or reduce flow.
/// This prevents flow across faces if the potential
/// difference is less than the threshold. If the potential
/// difference is greater, the threshold value is subtracted
/// before calculating flow. This is treated symmetrically, so
/// flow is prevented or reduced in both directions equally.
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
/// of the grid passed in the constructor.
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
/// Called once before each time step.
/// \param[in] dt time step size
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void prepareStep(const double dt,
ReservoirState& reservoir_state,
WellState& well_state);
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] dt time step size
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void afterStep(const double dt,
ReservoirState& reservoir_state,
WellState& well_state);
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
void assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly);
/// \brief Compute the residual norms of the mass balance for each phase,
/// the well flux, and the well equation.
/// \return a vector that contains for each phase the norm of the mass balance
/// and afterwards the norm of the residual of the well flux and the well equation.
std::vector<double> computeResidualNorms() const;
/// The size (number of unknowns) of the nonlinear system of equations.
int sizeNonLinear() const;
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const;
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
V solveJacobianSystem() const;
/// Apply an update to the primary variables, chopped if appropriate.
/// \param[in] dx updates to apply to primary variables
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
void updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state);
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const;
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] dt timestep length
/// \param[in] iteration current iteration number
bool getConvergence(const double dt, const int iteration);
/// The number of active phases in the model.
int numPhases() const;
protected:
// --------- Types and enums ---------
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
struct ReservoirResidualQuant {
ReservoirResidualQuant();
std::vector<ADB> accum; // Accumulations
ADB mflux; // Mass flux (surface conditions)
ADB b; // Reciprocal FVF
ADB dh; // Pressure drop across int. interfaces
ADB mob; // Phase mobility (per cell)
};
struct WellOps {
WellOps(const Wells* wells);
M w2p; // well -> perf (scatter)
M p2w; // perf -> well (gather)
};
// --------- Data members ---------
const Grid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
const RockCompressibility* rock_comp_props_;
const Wells* wells_;
const NewtonIterationBlackoilInterface& linsolver_;
// For each canonical phase -> true if active
const std::vector<bool> active_;
// Size = # active phases. Maps active -> canonical phase indices.
const std::vector<int> canph_;
const std::vector<int> cells_; // All grid cells
HelperOps ops_;
const WellOps wops_;
const bool has_disgas_;
const bool has_vapoil_;
ModelParameters param_;
bool use_threshold_pressure_;
V threshold_pressures_by_interior_face_;
std::vector<ReservoirResidualQuant> rq_;
std::vector<PhasePresence> phaseCondition_;
V isRs_;
V isRv_;
V isSg_;
V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation.
LinearisedBlackoilResidual residual_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
std::vector<int> primalVariable_;
V pvdt_;
// --------- Protected methods ---------
/// Access the most-derived class used for
/// static polymorphism (CRTP).
Implementation& asImpl()
{
return static_cast<Implementation&>(*this);
}
/// Access the most-derived class used for
/// static polymorphism (CRTP).
const Implementation& asImpl() const
{
return static_cast<const Implementation&>(*this);
}
// return true if wells are available
bool wellsActive() const { return wells_ ? wells_->number_of_wells > 0 : false ; }
// return wells object
const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; }
void
makeConstantState(SolutionState& state) const;
SolutionState
variableState(const ReservoirState& x,
const WellState& xw) const;
std::vector<V>
variableStateInitials(const ReservoirState& x,
const WellState& xw) const;
void
variableReservoirStateInitials(const ReservoirState& x,
std::vector<V>& vars0) const;
void
variableWellStateInitials(const WellState& xw,
std::vector<V>& vars0) const;
std::vector<int>
variableStateIndices() const;
std::vector<int>
variableWellStateIndices() const;
SolutionState
variableStateExtractVars(const ReservoirState& x,
const std::vector<int>& indices,
std::vector<ADB>& vars) const;
void
variableStateExtractWellsVars(const std::vector<int>& indices,
std::vector<ADB>& vars,
SolutionState& state) const;
void
computeAccum(const SolutionState& state,
const int aix );
void computeWellConnectionPressures(const SolutionState& state,
const WellState& xw);
void
assembleMassBalanceEq(const SolutionState& state);
void
solveWellEq(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state,
WellState& well_state);
void
computeWellFlux(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
V& aliveWells,
std::vector<ADB>& cq_s);
void
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw);
void
addWellFluxEq(const std::vector<ADB>& cq_s,
const SolutionState& state);
void
addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
const WellState& xw);
void
addWellControlEq(const SolutionState& state,
const WellState& xw,
const V& aliveWells);
void updateWellControls(WellState& xw) const;
void updateWellState(const V& dwells,
WellState& well_state);
bool getWellConvergence(const int iteration);
std::vector<ADB>
computePressures(const ADB& po,
const ADB& sw,
const ADB& so,
const ADB& sg) const;
V
computeGasPressure(const V& po,
const V& sw,
const V& so,
const V& sg) const;
std::vector<ADB>
computeRelPerm(const SolutionState& state) const;
void
computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& p ,
const SolutionState& state );
void applyThresholdPressures(ADB& dp);
ADB
fluidViscosity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
ADB
fluidDensity(const int phase,
const ADB& p ,
const ADB& temp ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const;
V
fluidRsSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRsSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
V
fluidRvSat(const V& p,
const V& so,
const std::vector<int>& cells) const;
ADB
fluidRvSat(const ADB& p,
const ADB& so,
const std::vector<int>& cells) const;
ADB
poroMult(const ADB& p) const;
ADB
transMult(const ADB& p) const;
const std::vector<PhasePresence>
phaseCondition() const {return phaseCondition_;}
void
classifyCondition(const ReservoirState& state);
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
/// be active to call this method.
void
updatePrimalVariableFromState(const ReservoirState& state);
/// Update the phaseCondition_ member based on the primalVariable_ member.
/// Also updates isRs_, isRv_ and isSg_;
void
updatePhaseCondFromPrimalVariable();
/// \brief Compute the reduction within the convergence check.
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. tempV.col(i) contains the
/// values
/// for phase i.
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
/// as the number of cells of the grid. B.col(i) contains the values
/// for phase i.
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
/// of R for the phase i.
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
/// maximum of tempV for the phase i.
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
/// of B for the phase i.
/// \param[out] maxNormWell The maximum of the well equations for each phase.
/// \param[in] nc The number of cells of the local grid.
/// \param[in] nw The number of wells on the local grid.
/// \return The total pore volume over all cells.
double
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& R,
std::array<double,MaxNumPhases>& R_sum,
std::array<double,MaxNumPhases>& maxCoeff,
std::array<double,MaxNumPhases>& B_avg,
std::vector<double>& maxNormWell,
int nc,
int nw) const;
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
};
} // namespace Opm
#include "BlackoilModelBase_impl.hpp"
#endif // OPM_BLACKOILMODELBASE_HEADER_INCLUDED