mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-24 16:30:02 -06:00
289 lines
12 KiB
C++
289 lines
12 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2016 - 2017 IRIS AS.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/StandardWellAssemble.hpp>
|
|
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
|
|
#include <opm/models/blackoil/blackoilindices.hh>
|
|
#include <opm/models/blackoil/blackoilonephaseindices.hh>
|
|
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
|
|
|
|
#include <opm/simulators/wells/StandardWellEquations.hpp>
|
|
#include <opm/simulators/wells/StandardWellPrimaryVariables.hpp>
|
|
#include <opm/simulators/wells/WellAssemble.hpp>
|
|
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
|
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
//! \brief Class administering assembler access to equation system.
|
|
template<class Scalar, int numEq>
|
|
class StandardWellEquationAccess {
|
|
public:
|
|
//! \brief Constructor initializes reference to the equation system.
|
|
StandardWellEquationAccess(StandardWellEquations<Scalar,numEq>& eqns)
|
|
: eqns_(eqns)
|
|
{}
|
|
|
|
using BVectorWell = typename StandardWellEquations<Scalar,numEq>::BVectorWell;
|
|
using DiagMatWell = typename StandardWellEquations<Scalar,numEq>::DiagMatWell;
|
|
using OffDiatMatWell = typename StandardWellEquations<Scalar,numEq>::OffDiagMatWell;
|
|
|
|
//! \brief Returns a reference to residual vector.
|
|
BVectorWell& residual()
|
|
{
|
|
return eqns_.resWell_;
|
|
}
|
|
|
|
//! \brief Returns a reference to B matrix.
|
|
OffDiatMatWell& B()
|
|
{
|
|
return eqns_.duneB_;
|
|
}
|
|
|
|
//! \brief Returns a reference to C matrix.
|
|
OffDiatMatWell& C()
|
|
{
|
|
return eqns_.duneC_;
|
|
}
|
|
|
|
//! \brief Returns a reference to D matrix.
|
|
DiagMatWell& D()
|
|
{
|
|
return eqns_.duneD_;
|
|
}
|
|
|
|
private:
|
|
StandardWellEquations<Scalar,numEq>& eqns_; //!< Reference to equation system
|
|
};
|
|
|
|
template<class FluidSystem, class Indices, class Scalar>
|
|
void
|
|
StandardWellAssemble<FluidSystem,Indices,Scalar>::
|
|
assembleControlEq(const WellState& well_state,
|
|
const GroupState& group_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const Well::InjectionControls& inj_controls,
|
|
const Well::ProductionControls& prod_controls,
|
|
const PrimaryVariables& primary_variables,
|
|
const double rho,
|
|
StandardWellEquations<Scalar,Indices::numEq>& eqns1,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
EvalWell control_eq(primary_variables.numWellEq() + Indices::numEq, 0.0);
|
|
|
|
const auto& well = well_.wellEcl();
|
|
|
|
auto getRates = [&]() {
|
|
std::vector<EvalWell> rates(3, EvalWell(primary_variables.numWellEq() + Indices::numEq, 0.0));
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
rates[Water] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
rates[Oil] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
rates[Gas] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
|
|
}
|
|
return rates;
|
|
};
|
|
|
|
if (well_.stopppedOrZeroRateTarget(summaryState, well_state)) {
|
|
control_eq = primary_variables.eval(PrimaryVariables::WQTotal);
|
|
} else if (well_.isInjector()) {
|
|
// Find injection rate.
|
|
const EvalWell injection_rate = primary_variables.eval(PrimaryVariables::WQTotal);
|
|
// Setup function for evaluation of BHP from THP (used only if needed).
|
|
std::function<EvalWell()> bhp_from_thp = [&]() {
|
|
const auto rates = getRates();
|
|
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
|
|
rates,
|
|
well,
|
|
summaryState,
|
|
rho,
|
|
deferred_logger);
|
|
};
|
|
|
|
WellAssemble(well_).
|
|
assembleControlEqInj(well_state,
|
|
group_state,
|
|
schedule,
|
|
summaryState,
|
|
inj_controls,
|
|
primary_variables.eval(PrimaryVariables::Bhp),
|
|
injection_rate,
|
|
bhp_from_thp,
|
|
control_eq,
|
|
deferred_logger);
|
|
} else {
|
|
// Find rates.
|
|
const auto rates = getRates();
|
|
// Setup function for evaluation of BHP from THP (used only if needed).
|
|
std::function<EvalWell()> bhp_from_thp = [&]() {
|
|
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
|
|
rates,
|
|
well,
|
|
summaryState,
|
|
rho,
|
|
deferred_logger);
|
|
};
|
|
WellAssemble(well_).
|
|
assembleControlEqProd(well_state,
|
|
group_state,
|
|
schedule,
|
|
summaryState,
|
|
prod_controls,
|
|
primary_variables.eval(PrimaryVariables::Bhp),
|
|
rates,
|
|
bhp_from_thp,
|
|
control_eq,
|
|
deferred_logger);
|
|
}
|
|
|
|
// using control_eq to update the matrix and residuals
|
|
// TODO: we should use a different index system for the well equations
|
|
StandardWellEquationAccess eqns(eqns1);
|
|
eqns.residual()[0][PrimaryVariables::Bhp] = control_eq.value();
|
|
for (int pv_idx = 0; pv_idx < primary_variables.numWellEq(); ++pv_idx) {
|
|
eqns.D()[0][0][PrimaryVariables::Bhp][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Indices, class Scalar>
|
|
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
|
|
assembleInjectivityEq(const EvalWell& eq_pskin,
|
|
const EvalWell& eq_wat_vel,
|
|
const int pskin_index,
|
|
const int wat_vel_index,
|
|
const int cell_idx,
|
|
const int numWellEq,
|
|
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
|
|
{
|
|
StandardWellEquationAccess eqns(eqns1);
|
|
eqns.residual()[0][pskin_index] = eq_pskin.value();
|
|
eqns.residual()[0][wat_vel_index] = eq_wat_vel.value();
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
eqns.D()[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+Indices::numEq);
|
|
eqns.D()[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+Indices::numEq);
|
|
}
|
|
|
|
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
|
|
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
|
|
eqns.B()[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Indices, class Scalar>
|
|
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
|
|
assemblePerforationEq(const EvalWell& cq_s_effective,
|
|
const int componentIdx,
|
|
const int cell_idx,
|
|
const int numWellEq,
|
|
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
|
|
{
|
|
StandardWellEquationAccess eqns(eqns1);
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
eqns.residual()[0][componentIdx] += cq_s_effective.value();
|
|
|
|
// assemble the jacobians
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
eqns.C()[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+Indices::numEq); // intput in transformed matrix
|
|
eqns.D()[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+Indices::numEq);
|
|
}
|
|
|
|
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
|
|
eqns.B()[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
|
|
}
|
|
}
|
|
|
|
template<class FluidSystem, class Indices, class Scalar>
|
|
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
|
|
assembleSourceEq(const EvalWell& resWell_loc,
|
|
const int componentIdx,
|
|
const int numWellEq,
|
|
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
|
|
{
|
|
StandardWellEquationAccess eqns(eqns1);
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
eqns.D()[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+Indices::numEq);
|
|
}
|
|
eqns.residual()[0][componentIdx] += resWell_loc.value();
|
|
}
|
|
|
|
template<class FluidSystem, class Indices, class Scalar>
|
|
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
|
|
assembleZFracEq(const EvalWell& cq_s_zfrac_effective,
|
|
const int cell_idx,
|
|
const int numWellEq,
|
|
StandardWellEquations<Scalar,Indices::numEq>& eqns1) const
|
|
{
|
|
StandardWellEquationAccess eqns(eqns1);
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
eqns.C()[0][cell_idx][pvIdx][Indices::contiZfracEqIdx] -= cq_s_zfrac_effective.derivative(pvIdx+Indices::numEq);
|
|
}
|
|
}
|
|
|
|
#define INSTANCE(Dim,...) \
|
|
template class StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
|
|
|
|
// One phase
|
|
INSTANCE(4u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
|
|
INSTANCE(5u, BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
|
|
INSTANCE(9u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
|
|
|
|
// Two phase
|
|
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
|
|
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
|
|
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
|
|
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
|
|
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
|
|
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
|
|
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
|
|
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
|
|
INSTANCE(8u, BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
|
|
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
|
|
INSTANCE(8u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>)
|
|
// Blackoil
|
|
INSTANCE(8u, BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
|
|
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
|
|
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
|
|
INSTANCE(9u, BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
|
|
INSTANCE(9u, BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
|
|
INSTANCE(9u, BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
|
|
INSTANCE(10u, BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
|
|
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
|
|
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
|
|
INSTANCE(11u, BlackOilIndices<1u,0u,0u,0u,true,false,0u,0u>)
|
|
|
|
}
|