mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 08:41:00 -06:00
f6d3893093
move code for loading parameters from eclipse state into it
536 lines
21 KiB
C++
536 lines
21 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief Contains the classes required to extend the black-oil model to include the effects of foam.
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_FOAM_MODULE_HH
|
|
#define EWOMS_BLACK_OIL_FOAM_MODULE_HH
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <opm/input/eclipse/EclipseState/Phase.hpp>
|
|
|
|
#include <opm/models/blackoil/blackoilfoamparams.hpp>
|
|
#include <opm/models/blackoil/blackoilproperties.hh>
|
|
|
|
#include <opm/models/discretization/common/fvbaseparameters.hh>
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
|
|
#if HAVE_ECL_INPUT
|
|
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/FoamadsTable.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Tables/FoammobTable.hpp>
|
|
#endif
|
|
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup BlackOil
|
|
* \brief Contains the high level supplements required to extend the black oil
|
|
* model to include the effects of foam.
|
|
*/
|
|
template <class TypeTag, bool enableFoamV = getPropValue<TypeTag, Properties::EnableFoam>()>
|
|
class BlackOilFoamModule
|
|
{
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
using TabulatedFunction = typename BlackOilFoamParams<Scalar>::TabulatedFunction;
|
|
|
|
static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx;
|
|
static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx;
|
|
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
|
|
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
|
|
static constexpr unsigned enableFoam = enableFoamV;
|
|
|
|
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
|
|
static constexpr unsigned numPhases = FluidSystem::numPhases;
|
|
|
|
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
|
|
|
|
public:
|
|
//! \brief Set parameters.
|
|
static void setParams(BlackOilFoamParams<Scalar>&& params)
|
|
{
|
|
params_ = params;
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the black-oil foam module.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all foam specific VTK and ECL output modules.
|
|
*/
|
|
static void registerOutputModules(Model&,
|
|
Simulator&)
|
|
{
|
|
if constexpr (enableFoam) {
|
|
if (Parameters::Get<Parameters::EnableVtkOutput>()) {
|
|
OpmLog::warning("VTK output requested, currently unsupported by the foam module.");
|
|
}
|
|
}
|
|
//model.addOutputModule(new VtkBlackOilFoamModule<TypeTag>(simulator));
|
|
}
|
|
|
|
static bool primaryVarApplies(unsigned pvIdx)
|
|
{
|
|
if constexpr (enableFoam)
|
|
return pvIdx == foamConcentrationIdx;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static std::string primaryVarName([[maybe_unused]] unsigned pvIdx)
|
|
{
|
|
assert(primaryVarApplies(pvIdx));
|
|
return "foam_concentration";
|
|
}
|
|
|
|
static Scalar primaryVarWeight([[maybe_unused]] unsigned pvIdx)
|
|
{
|
|
assert(primaryVarApplies(pvIdx));
|
|
|
|
// TODO: it may be beneficial to chose this differently.
|
|
return static_cast<Scalar>(1.0);
|
|
}
|
|
|
|
static bool eqApplies(unsigned eqIdx)
|
|
{
|
|
if constexpr (enableFoam)
|
|
return eqIdx == contiFoamEqIdx;
|
|
else
|
|
return false;
|
|
|
|
}
|
|
|
|
static std::string eqName([[maybe_unused]] unsigned eqIdx)
|
|
{
|
|
assert(eqApplies(eqIdx));
|
|
|
|
return "conti^foam";
|
|
}
|
|
|
|
static Scalar eqWeight([[maybe_unused]] unsigned eqIdx)
|
|
{
|
|
assert(eqApplies(eqIdx));
|
|
|
|
// TODO: it may be beneficial to chose this differently.
|
|
return static_cast<Scalar>(1.0);
|
|
}
|
|
|
|
// must be called after water storage is computed
|
|
template <class LhsEval>
|
|
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
|
const IntensiveQuantities& intQuants)
|
|
{
|
|
if constexpr (enableFoam) {
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
LhsEval surfaceVolume = Toolbox::template decay<LhsEval>(intQuants.porosity());
|
|
if (params_.transport_phase_ == Phase::WATER) {
|
|
surfaceVolume *= (Toolbox::template decay<LhsEval>(fs.saturation(waterPhaseIdx))
|
|
* Toolbox::template decay<LhsEval>(fs.invB(waterPhaseIdx)));
|
|
} else if (params_.transport_phase_ == Phase::GAS) {
|
|
surfaceVolume *= (Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx))
|
|
* Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx)));
|
|
} else if (params_.transport_phase_ == Phase::SOLVENT) {
|
|
if constexpr (enableSolvent) {
|
|
surfaceVolume *= (Toolbox::template decay<LhsEval>( intQuants.solventSaturation())
|
|
* Toolbox::template decay<LhsEval>(intQuants.solventInverseFormationVolumeFactor()));
|
|
}
|
|
} else {
|
|
throw std::runtime_error("Transport phase is GAS/WATER/SOLVENT");
|
|
}
|
|
|
|
// Avoid singular matrix if no gas is present.
|
|
surfaceVolume = max(surfaceVolume, 1e-10);
|
|
|
|
// Foam/surfactant in free phase.
|
|
const LhsEval freeFoam = surfaceVolume
|
|
* Toolbox::template decay<LhsEval>(intQuants.foamConcentration());
|
|
|
|
// Adsorbed foam/surfactant.
|
|
const LhsEval adsorbedFoam =
|
|
Toolbox::template decay<LhsEval>(1.0 - intQuants.porosity())
|
|
* Toolbox::template decay<LhsEval>(intQuants.foamRockDensity())
|
|
* Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed());
|
|
|
|
LhsEval accumulationFoam = freeFoam + adsorbedFoam;
|
|
storage[contiFoamEqIdx] += accumulationFoam;
|
|
}
|
|
}
|
|
|
|
static void computeFlux([[maybe_unused]] RateVector& flux,
|
|
[[maybe_unused]] const ElementContext& elemCtx,
|
|
[[maybe_unused]] unsigned scvfIdx,
|
|
[[maybe_unused]] unsigned timeIdx)
|
|
|
|
{
|
|
if constexpr (enableFoam) {
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
const unsigned inIdx = extQuants.interiorIndex();
|
|
|
|
// The effect of the mobility reduction factor is
|
|
// incorporated in the mobility for the relevant phase,
|
|
// so fluxes do not need modification here.
|
|
switch (transportPhase()) {
|
|
case Phase::WATER: {
|
|
const unsigned upIdx = extQuants.upstreamIndex(waterPhaseIdx);
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
if (upIdx == inIdx) {
|
|
flux[contiFoamEqIdx] =
|
|
extQuants.volumeFlux(waterPhaseIdx)
|
|
*up.fluidState().invB(waterPhaseIdx)
|
|
*up.foamConcentration();
|
|
} else {
|
|
flux[contiFoamEqIdx] =
|
|
extQuants.volumeFlux(waterPhaseIdx)
|
|
*decay<Scalar>(up.fluidState().invB(waterPhaseIdx))
|
|
*decay<Scalar>(up.foamConcentration());
|
|
}
|
|
break;
|
|
}
|
|
case Phase::GAS: {
|
|
const unsigned upIdx = extQuants.upstreamIndex(gasPhaseIdx);
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
if (upIdx == inIdx) {
|
|
flux[contiFoamEqIdx] =
|
|
extQuants.volumeFlux(gasPhaseIdx)
|
|
*up.fluidState().invB(gasPhaseIdx)
|
|
*up.foamConcentration();
|
|
} else {
|
|
flux[contiFoamEqIdx] =
|
|
extQuants.volumeFlux(gasPhaseIdx)
|
|
*decay<Scalar>(up.fluidState().invB(gasPhaseIdx))
|
|
*decay<Scalar>(up.foamConcentration());
|
|
}
|
|
break;
|
|
}
|
|
case Phase::SOLVENT: {
|
|
if constexpr (enableSolvent) {
|
|
const unsigned upIdx = extQuants.solventUpstreamIndex();
|
|
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
if (upIdx == inIdx) {
|
|
flux[contiFoamEqIdx] =
|
|
extQuants.solventVolumeFlux()
|
|
*up.solventInverseFormationVolumeFactor()
|
|
*up.foamConcentration();
|
|
} else {
|
|
flux[contiFoamEqIdx] =
|
|
extQuants.solventVolumeFlux()
|
|
*decay<Scalar>(up.solventInverseFormationVolumeFactor())
|
|
*decay<Scalar>(up.foamConcentration());
|
|
}
|
|
} else {
|
|
throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Return how much a Newton-Raphson update is considered an error
|
|
*/
|
|
static Scalar computeUpdateError(const PrimaryVariables&,
|
|
const EqVector&)
|
|
{
|
|
// do not consider the change of foam primary variables for convergence
|
|
// TODO: maybe this should be changed
|
|
return static_cast<Scalar>(0.0);
|
|
}
|
|
|
|
template <class DofEntity>
|
|
static void serializeEntity([[maybe_unused]] const Model& model,
|
|
[[maybe_unused]] std::ostream& outstream,
|
|
[[maybe_unused]] const DofEntity& dof)
|
|
{
|
|
if constexpr (enableFoam) {
|
|
unsigned dofIdx = model.dofMapper().index(dof);
|
|
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
|
|
outstream << priVars[foamConcentrationIdx];
|
|
}
|
|
}
|
|
|
|
template <class DofEntity>
|
|
static void deserializeEntity([[maybe_unused]] Model& model,
|
|
[[maybe_unused]] std::istream& instream,
|
|
[[maybe_unused]] const DofEntity& dof)
|
|
{
|
|
if constexpr (enableFoam) {
|
|
unsigned dofIdx = model.dofMapper().index(dof);
|
|
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
|
|
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
|
|
|
|
instream >> priVars0[foamConcentrationIdx];
|
|
|
|
// set the primary variables for the beginning of the current time step.
|
|
priVars1[foamConcentrationIdx] = priVars0[foamConcentrationIdx];
|
|
}
|
|
}
|
|
|
|
static const Scalar foamRockDensity(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.foamRockDensity_[satnumRegionIdx];
|
|
}
|
|
|
|
static bool foamAllowDesorption(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.foamAllowDesorption_[satnumRegionIdx];
|
|
}
|
|
|
|
static const TabulatedFunction& adsorbedFoamTable(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.adsorbedFoamTable_[satnumRegionIdx];
|
|
}
|
|
|
|
static const TabulatedFunction& gasMobilityMultiplierTable(const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.gasMobilityMultiplierTable_[pvtnumRegionIdx];
|
|
}
|
|
|
|
static const typename BlackOilFoamParams<Scalar>::FoamCoefficients&
|
|
foamCoefficients(const ElementContext& elemCtx,
|
|
const unsigned scvIdx,
|
|
const unsigned timeIdx)
|
|
{
|
|
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
|
|
return params_.foamCoefficients_[satnumRegionIdx];
|
|
}
|
|
|
|
static Phase transportPhase() {
|
|
return params_.transport_phase_;
|
|
}
|
|
|
|
private:
|
|
static BlackOilFoamParams<Scalar> params_;
|
|
};
|
|
|
|
template <class TypeTag, bool enableFoam>
|
|
BlackOilFoamParams<typename BlackOilFoamModule<TypeTag, enableFoam>::Scalar>
|
|
BlackOilFoamModule<TypeTag, enableFoam>::params_;
|
|
|
|
/*!
|
|
* \ingroup BlackOil
|
|
* \class Opm::BlackOilFoamIntensiveQuantities
|
|
*
|
|
* \brief Provides the volumetric quantities required for the equations needed by the
|
|
* polymers extension of the black-oil model.
|
|
*/
|
|
template <class TypeTag, bool enableFoam = getPropValue<TypeTag, Properties::EnableFoam>()>
|
|
class BlackOilFoamIntensiveQuantities
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
|
|
using FoamModule = BlackOilFoamModule<TypeTag>;
|
|
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
|
|
|
|
static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
|
|
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
|
|
static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
|
|
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
|
|
|
|
public:
|
|
|
|
/*!
|
|
* \brief Update the intensive properties needed to handle polymers from the
|
|
* primary variables
|
|
*
|
|
*/
|
|
void foamPropertiesUpdate_(const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
foamConcentration_ = priVars.makeEvaluation(foamConcentrationIdx, timeIdx);
|
|
const auto& fs = asImp_().fluidState_;
|
|
|
|
// Compute gas mobility reduction factor
|
|
Evaluation mobilityReductionFactor = 1.0;
|
|
if (false) {
|
|
// The functional model is used.
|
|
// TODO: allow this model.
|
|
// In order to do this we must allow transport to be in the water phase, not just the gas phase.
|
|
const auto& foamCoefficients = FoamModule::foamCoefficients(elemCtx, dofIdx, timeIdx);
|
|
|
|
const Scalar fm_mob = foamCoefficients.fm_mob;
|
|
|
|
const Scalar fm_surf = foamCoefficients.fm_surf;
|
|
const Scalar ep_surf = foamCoefficients.ep_surf;
|
|
|
|
const Scalar fm_oil = foamCoefficients.fm_oil;
|
|
const Scalar fl_oil = foamCoefficients.fl_oil;
|
|
const Scalar ep_oil = foamCoefficients.ep_oil;
|
|
|
|
const Scalar fm_dry = foamCoefficients.fm_dry;
|
|
const Scalar ep_dry = foamCoefficients.ep_dry;
|
|
|
|
const Scalar fm_cap = foamCoefficients.fm_cap;
|
|
const Scalar ep_cap = foamCoefficients.ep_cap;
|
|
|
|
const Evaluation C_surf = foamConcentration_;
|
|
const Evaluation Ca = 1e10; // TODO: replace with proper capillary number.
|
|
const Evaluation S_o = fs.saturation(oilPhaseIdx);
|
|
const Evaluation S_w = fs.saturation(waterPhaseIdx);
|
|
|
|
Evaluation F1 = pow(C_surf/fm_surf, ep_surf);
|
|
Evaluation F2 = pow((fm_oil-S_o)/(fm_oil-fl_oil), ep_oil);
|
|
Evaluation F3 = pow(fm_cap/Ca, ep_cap);
|
|
Evaluation F7 = 0.5 + atan(ep_dry*(S_w-fm_dry))/M_PI;
|
|
|
|
mobilityReductionFactor = 1./(1. + fm_mob*F1*F2*F3*F7);
|
|
} else {
|
|
// The tabular model is used.
|
|
// Note that the current implementation only includes the effect of foam concentration (FOAMMOB),
|
|
// and not the optional pressure dependence (FOAMMOBP) or shear dependence (FOAMMOBS).
|
|
const auto& gasMobilityMultiplier = FoamModule::gasMobilityMultiplierTable(elemCtx, dofIdx, timeIdx);
|
|
mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true);
|
|
}
|
|
|
|
// adjust mobility
|
|
switch (FoamModule::transportPhase()) {
|
|
case Phase::WATER: {
|
|
asImp_().mobility_[waterPhaseIdx] *= mobilityReductionFactor;
|
|
break;
|
|
}
|
|
case Phase::GAS: {
|
|
asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor;
|
|
break;
|
|
}
|
|
case Phase::SOLVENT: {
|
|
if constexpr (enableSolvent) {
|
|
asImp_().solventMobility_ *= mobilityReductionFactor;
|
|
} else {
|
|
throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
|
|
}
|
|
}
|
|
|
|
foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx);
|
|
|
|
const auto& adsorbedFoamTable = FoamModule::adsorbedFoamTable(elemCtx, dofIdx, timeIdx);
|
|
foamAdsorbed_ = adsorbedFoamTable.eval(foamConcentration_, /*extrapolate=*/true);
|
|
if (!FoamModule::foamAllowDesorption(elemCtx, dofIdx, timeIdx)) {
|
|
throw std::runtime_error("Foam module does not support the 'no desorption' option.");
|
|
}
|
|
}
|
|
|
|
const Evaluation& foamConcentration() const
|
|
{ return foamConcentration_; }
|
|
|
|
Scalar foamRockDensity() const
|
|
{ return foamRockDensity_; }
|
|
|
|
const Evaluation& foamAdsorbed() const
|
|
{ return foamAdsorbed_; }
|
|
|
|
protected:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
|
|
Evaluation foamConcentration_;
|
|
Scalar foamRockDensity_;
|
|
Evaluation foamAdsorbed_;
|
|
};
|
|
|
|
template <class TypeTag>
|
|
class BlackOilFoamIntensiveQuantities<TypeTag, false>
|
|
{
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
|
|
public:
|
|
void foamPropertiesUpdate_(const ElementContext&,
|
|
unsigned,
|
|
unsigned)
|
|
{ }
|
|
|
|
|
|
const Evaluation& foamConcentration() const
|
|
{ throw std::runtime_error("foamConcentration() called but foam is disabled"); }
|
|
|
|
Scalar foamRockDensity() const
|
|
{ throw std::runtime_error("foamRockDensity() called but foam is disabled"); }
|
|
|
|
Scalar foamAdsorbed() const
|
|
{ throw std::runtime_error("foamAdsorbed() called but foam is disabled"); }
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|