opm-simulators/opm/models/blackoil/blackoilfoammodules.hh
Arne Morten Kvarving f6d3893093 blackoilfoamparams: introduce translation unit
move code for loading parameters from eclipse state into it
2024-09-04 09:13:02 +02:00

536 lines
21 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model to include the effects of foam.
*/
#ifndef EWOMS_BLACK_OIL_FOAM_MODULE_HH
#define EWOMS_BLACK_OIL_FOAM_MODULE_HH
#include <dune/common/fvector.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/input/eclipse/EclipseState/Phase.hpp>
#include <opm/models/blackoil/blackoilfoamparams.hpp>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#if HAVE_ECL_INPUT
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Tables/FoamadsTable.hpp>
#include <opm/input/eclipse/EclipseState/Tables/FoammobTable.hpp>
#endif
#include <string>
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model to include the effects of foam.
*/
template <class TypeTag, bool enableFoamV = getPropValue<TypeTag, Properties::EnableFoam>()>
class BlackOilFoamModule
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Toolbox = MathToolbox<Evaluation>;
using TabulatedFunction = typename BlackOilFoamParams<Scalar>::TabulatedFunction;
static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx;
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned enableFoam = enableFoamV;
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
static constexpr unsigned numPhases = FluidSystem::numPhases;
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
public:
//! \brief Set parameters.
static void setParams(BlackOilFoamParams<Scalar>&& params)
{
params_ = params;
}
/*!
* \brief Register all run-time parameters for the black-oil foam module.
*/
static void registerParameters()
{
}
/*!
* \brief Register all foam specific VTK and ECL output modules.
*/
static void registerOutputModules(Model&,
Simulator&)
{
if constexpr (enableFoam) {
if (Parameters::Get<Parameters::EnableVtkOutput>()) {
OpmLog::warning("VTK output requested, currently unsupported by the foam module.");
}
}
//model.addOutputModule(new VtkBlackOilFoamModule<TypeTag>(simulator));
}
static bool primaryVarApplies(unsigned pvIdx)
{
if constexpr (enableFoam)
return pvIdx == foamConcentrationIdx;
else
return false;
}
static std::string primaryVarName([[maybe_unused]] unsigned pvIdx)
{
assert(primaryVarApplies(pvIdx));
return "foam_concentration";
}
static Scalar primaryVarWeight([[maybe_unused]] unsigned pvIdx)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if constexpr (enableFoam)
return eqIdx == contiFoamEqIdx;
else
return false;
}
static std::string eqName([[maybe_unused]] unsigned eqIdx)
{
assert(eqApplies(eqIdx));
return "conti^foam";
}
static Scalar eqWeight([[maybe_unused]] unsigned eqIdx)
{
assert(eqApplies(eqIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
// must be called after water storage is computed
template <class LhsEval>
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{
if constexpr (enableFoam) {
const auto& fs = intQuants.fluidState();
LhsEval surfaceVolume = Toolbox::template decay<LhsEval>(intQuants.porosity());
if (params_.transport_phase_ == Phase::WATER) {
surfaceVolume *= (Toolbox::template decay<LhsEval>(fs.saturation(waterPhaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(waterPhaseIdx)));
} else if (params_.transport_phase_ == Phase::GAS) {
surfaceVolume *= (Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx)));
} else if (params_.transport_phase_ == Phase::SOLVENT) {
if constexpr (enableSolvent) {
surfaceVolume *= (Toolbox::template decay<LhsEval>( intQuants.solventSaturation())
* Toolbox::template decay<LhsEval>(intQuants.solventInverseFormationVolumeFactor()));
}
} else {
throw std::runtime_error("Transport phase is GAS/WATER/SOLVENT");
}
// Avoid singular matrix if no gas is present.
surfaceVolume = max(surfaceVolume, 1e-10);
// Foam/surfactant in free phase.
const LhsEval freeFoam = surfaceVolume
* Toolbox::template decay<LhsEval>(intQuants.foamConcentration());
// Adsorbed foam/surfactant.
const LhsEval adsorbedFoam =
Toolbox::template decay<LhsEval>(1.0 - intQuants.porosity())
* Toolbox::template decay<LhsEval>(intQuants.foamRockDensity())
* Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed());
LhsEval accumulationFoam = freeFoam + adsorbedFoam;
storage[contiFoamEqIdx] += accumulationFoam;
}
}
static void computeFlux([[maybe_unused]] RateVector& flux,
[[maybe_unused]] const ElementContext& elemCtx,
[[maybe_unused]] unsigned scvfIdx,
[[maybe_unused]] unsigned timeIdx)
{
if constexpr (enableFoam) {
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const unsigned inIdx = extQuants.interiorIndex();
// The effect of the mobility reduction factor is
// incorporated in the mobility for the relevant phase,
// so fluxes do not need modification here.
switch (transportPhase()) {
case Phase::WATER: {
const unsigned upIdx = extQuants.upstreamIndex(waterPhaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*up.fluidState().invB(waterPhaseIdx)
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(waterPhaseIdx)
*decay<Scalar>(up.fluidState().invB(waterPhaseIdx))
*decay<Scalar>(up.foamConcentration());
}
break;
}
case Phase::GAS: {
const unsigned upIdx = extQuants.upstreamIndex(gasPhaseIdx);
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*up.fluidState().invB(gasPhaseIdx)
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*decay<Scalar>(up.fluidState().invB(gasPhaseIdx))
*decay<Scalar>(up.foamConcentration());
}
break;
}
case Phase::SOLVENT: {
if constexpr (enableSolvent) {
const unsigned upIdx = extQuants.solventUpstreamIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.solventVolumeFlux()
*up.solventInverseFormationVolumeFactor()
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.solventVolumeFlux()
*decay<Scalar>(up.solventInverseFormationVolumeFactor())
*decay<Scalar>(up.foamConcentration());
}
} else {
throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
}
break;
}
default: {
throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
}
}
}
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables&,
const EqVector&)
{
// do not consider the change of foam primary variables for convergence
// TODO: maybe this should be changed
return static_cast<Scalar>(0.0);
}
template <class DofEntity>
static void serializeEntity([[maybe_unused]] const Model& model,
[[maybe_unused]] std::ostream& outstream,
[[maybe_unused]] const DofEntity& dof)
{
if constexpr (enableFoam) {
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[foamConcentrationIdx];
}
}
template <class DofEntity>
static void deserializeEntity([[maybe_unused]] Model& model,
[[maybe_unused]] std::istream& instream,
[[maybe_unused]] const DofEntity& dof)
{
if constexpr (enableFoam) {
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[foamConcentrationIdx];
// set the primary variables for the beginning of the current time step.
priVars1[foamConcentrationIdx] = priVars0[foamConcentrationIdx];
}
}
static const Scalar foamRockDensity(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.foamRockDensity_[satnumRegionIdx];
}
static bool foamAllowDesorption(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.foamAllowDesorption_[satnumRegionIdx];
}
static const TabulatedFunction& adsorbedFoamTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.adsorbedFoamTable_[satnumRegionIdx];
}
static const TabulatedFunction& gasMobilityMultiplierTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.gasMobilityMultiplierTable_[pvtnumRegionIdx];
}
static const typename BlackOilFoamParams<Scalar>::FoamCoefficients&
foamCoefficients(const ElementContext& elemCtx,
const unsigned scvIdx,
const unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return params_.foamCoefficients_[satnumRegionIdx];
}
static Phase transportPhase() {
return params_.transport_phase_;
}
private:
static BlackOilFoamParams<Scalar> params_;
};
template <class TypeTag, bool enableFoam>
BlackOilFoamParams<typename BlackOilFoamModule<TypeTag, enableFoam>::Scalar>
BlackOilFoamModule<TypeTag, enableFoam>::params_;
/*!
* \ingroup BlackOil
* \class Opm::BlackOilFoamIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* polymers extension of the black-oil model.
*/
template <class TypeTag, bool enableFoam = getPropValue<TypeTag, Properties::EnableFoam>()>
class BlackOilFoamIntensiveQuantities
{
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FoamModule = BlackOilFoamModule<TypeTag>;
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
public:
/*!
* \brief Update the intensive properties needed to handle polymers from the
* primary variables
*
*/
void foamPropertiesUpdate_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
foamConcentration_ = priVars.makeEvaluation(foamConcentrationIdx, timeIdx);
const auto& fs = asImp_().fluidState_;
// Compute gas mobility reduction factor
Evaluation mobilityReductionFactor = 1.0;
if (false) {
// The functional model is used.
// TODO: allow this model.
// In order to do this we must allow transport to be in the water phase, not just the gas phase.
const auto& foamCoefficients = FoamModule::foamCoefficients(elemCtx, dofIdx, timeIdx);
const Scalar fm_mob = foamCoefficients.fm_mob;
const Scalar fm_surf = foamCoefficients.fm_surf;
const Scalar ep_surf = foamCoefficients.ep_surf;
const Scalar fm_oil = foamCoefficients.fm_oil;
const Scalar fl_oil = foamCoefficients.fl_oil;
const Scalar ep_oil = foamCoefficients.ep_oil;
const Scalar fm_dry = foamCoefficients.fm_dry;
const Scalar ep_dry = foamCoefficients.ep_dry;
const Scalar fm_cap = foamCoefficients.fm_cap;
const Scalar ep_cap = foamCoefficients.ep_cap;
const Evaluation C_surf = foamConcentration_;
const Evaluation Ca = 1e10; // TODO: replace with proper capillary number.
const Evaluation S_o = fs.saturation(oilPhaseIdx);
const Evaluation S_w = fs.saturation(waterPhaseIdx);
Evaluation F1 = pow(C_surf/fm_surf, ep_surf);
Evaluation F2 = pow((fm_oil-S_o)/(fm_oil-fl_oil), ep_oil);
Evaluation F3 = pow(fm_cap/Ca, ep_cap);
Evaluation F7 = 0.5 + atan(ep_dry*(S_w-fm_dry))/M_PI;
mobilityReductionFactor = 1./(1. + fm_mob*F1*F2*F3*F7);
} else {
// The tabular model is used.
// Note that the current implementation only includes the effect of foam concentration (FOAMMOB),
// and not the optional pressure dependence (FOAMMOBP) or shear dependence (FOAMMOBS).
const auto& gasMobilityMultiplier = FoamModule::gasMobilityMultiplierTable(elemCtx, dofIdx, timeIdx);
mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true);
}
// adjust mobility
switch (FoamModule::transportPhase()) {
case Phase::WATER: {
asImp_().mobility_[waterPhaseIdx] *= mobilityReductionFactor;
break;
}
case Phase::GAS: {
asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor;
break;
}
case Phase::SOLVENT: {
if constexpr (enableSolvent) {
asImp_().solventMobility_ *= mobilityReductionFactor;
} else {
throw std::runtime_error("Foam transport phase is SOLVENT but SOLVENT is not activated.");
}
break;
}
default: {
throw std::runtime_error("Foam transport phase must be GAS/WATER/SOLVENT.");
}
}
foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx);
const auto& adsorbedFoamTable = FoamModule::adsorbedFoamTable(elemCtx, dofIdx, timeIdx);
foamAdsorbed_ = adsorbedFoamTable.eval(foamConcentration_, /*extrapolate=*/true);
if (!FoamModule::foamAllowDesorption(elemCtx, dofIdx, timeIdx)) {
throw std::runtime_error("Foam module does not support the 'no desorption' option.");
}
}
const Evaluation& foamConcentration() const
{ return foamConcentration_; }
Scalar foamRockDensity() const
{ return foamRockDensity_; }
const Evaluation& foamAdsorbed() const
{ return foamAdsorbed_; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation foamConcentration_;
Scalar foamRockDensity_;
Evaluation foamAdsorbed_;
};
template <class TypeTag>
class BlackOilFoamIntensiveQuantities<TypeTag, false>
{
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
void foamPropertiesUpdate_(const ElementContext&,
unsigned,
unsigned)
{ }
const Evaluation& foamConcentration() const
{ throw std::runtime_error("foamConcentration() called but foam is disabled"); }
Scalar foamRockDensity() const
{ throw std::runtime_error("foamRockDensity() called but foam is disabled"); }
Scalar foamAdsorbed() const
{ throw std::runtime_error("foamAdsorbed() called but foam is disabled"); }
};
} // namespace Opm
#endif