opm-simulators/opm/models/blackoil/blackoilnewtonmethod.hpp
2024-09-16 15:17:50 +02:00

438 lines
18 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::BlackOilNewtonMethod
*/
#ifndef OPM_BLACK_OIL_NEWTON_METHOD_HPP
#define OPM_BLACK_OIL_NEWTON_METHOD_HPP
#include <opm/common/Exceptions.hpp>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/blackoil/blackoilmicpmodules.hh>
#include <opm/models/blackoil/blackoilnewtonmethodparams.hpp>
#include <opm/models/nonlinear/newtonmethod.hh>
#include <opm/models/utils/signum.hh>
namespace Opm::Properties {
template <class TypeTag, class MyTypeTag>
struct DiscNewtonMethod;
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup BlackOilModel
*
* \brief A newton solver which is specific to the black oil model.
*/
template <class TypeTag>
class BlackOilNewtonMethod : public GetPropType<TypeTag, Properties::DiscNewtonMethod>
{
using ParentType = GetPropType<TypeTag, Properties::DiscNewtonMethod>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
using MICPModule = BlackOilMICPModule<TypeTag>;
static const unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
static constexpr bool enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>();
public:
BlackOilNewtonMethod(Simulator& simulator) : ParentType(simulator)
{
bparams_.read();
}
/*!
* \copydoc NewtonMethod::finishInit()
*/
void finishInit()
{
ParentType::finishInit();
wasSwitched_.resize(this->model().numTotalDof(), false);
}
/*!
* \brief Register all run-time parameters for the blackoil newton method.
*/
static void registerParameters()
{
ParentType::registerParameters();
BlackoilNewtonParams<Scalar>::registerParameters();
}
/*!
* \brief Returns the number of degrees of freedom for which the
* interpretation has changed for the most recent iteration.
*/
unsigned numPriVarsSwitched() const
{ return numPriVarsSwitched_; }
protected:
friend NewtonMethod<TypeTag>;
friend ParentType;
/*!
* \copydoc FvBaseNewtonMethod::beginIteration_
*/
void beginIteration_()
{
numPriVarsSwitched_ = 0;
ParentType::beginIteration_();
}
/*!
* \copydoc FvBaseNewtonMethod::endIteration_
*/
void endIteration_(SolutionVector& uCurrentIter,
const SolutionVector& uLastIter)
{
#if HAVE_MPI
// in the MPI enabled case we need to add up the number of DOF
// for which the interpretation changed over all processes.
int localSwitched = numPriVarsSwitched_;
MPI_Allreduce(&localSwitched,
&numPriVarsSwitched_,
/*num=*/1,
MPI_INT,
MPI_SUM,
MPI_COMM_WORLD);
#endif // HAVE_MPI
this->simulator_.model().newtonMethod().endIterMsg()
<< ", num switched=" << numPriVarsSwitched_;
ParentType::endIteration_(uCurrentIter, uLastIter);
}
public:
void update_(SolutionVector& nextSolution,
const SolutionVector& currentSolution,
const GlobalEqVector& solutionUpdate,
const GlobalEqVector& currentResidual)
{
const auto& comm = this->simulator_.gridView().comm();
int succeeded;
try {
ParentType::update_(nextSolution,
currentSolution,
solutionUpdate,
currentResidual);
succeeded = 1;
}
catch (...) {
succeeded = 0;
}
succeeded = comm.min(succeeded);
if (!succeeded) {
throw NumericalProblem("A process did not succeed in adapting the primary variables");
}
numPriVarsSwitched_ = comm.sum(numPriVarsSwitched_);
}
template <class DofIndices>
void update_(SolutionVector& nextSolution,
const SolutionVector& currentSolution,
const GlobalEqVector& solutionUpdate,
const GlobalEqVector& currentResidual,
const DofIndices& dofIndices)
{
const auto zero = 0.0 * solutionUpdate[0];
for (auto dofIdx : dofIndices) {
if (solutionUpdate[dofIdx] == zero) {
continue;
}
updatePrimaryVariables_(dofIdx,
nextSolution[dofIdx],
currentSolution[dofIdx],
solutionUpdate[dofIdx],
currentResidual[dofIdx]);
}
}
protected:
/*!
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
*/
void updatePrimaryVariables_(unsigned globalDofIdx,
PrimaryVariables& nextValue,
const PrimaryVariables& currentValue,
const EqVector& update,
const EqVector& currentResidual)
{
static constexpr bool enableSolvent = Indices::solventSaturationIdx >= 0;
static constexpr bool enableExtbo = Indices::zFractionIdx >= 0;
static constexpr bool enablePolymer = Indices::polymerConcentrationIdx >= 0;
static constexpr bool enablePolymerWeight = Indices::polymerMoleWeightIdx >= 0;
static constexpr bool enableEnergy = Indices::temperatureIdx >= 0;
static constexpr bool enableFoam = Indices::foamConcentrationIdx >= 0;
static constexpr bool enableBrine = Indices::saltConcentrationIdx >= 0;
static constexpr bool enableMICP = Indices::microbialConcentrationIdx >= 0;
currentValue.checkDefined();
Valgrind::CheckDefined(update);
Valgrind::CheckDefined(currentResidual);
// saturation delta for each phase
Scalar deltaSw = 0.0;
Scalar deltaSo = 0.0;
Scalar deltaSg = 0.0;
Scalar deltaSs = 0.0;
if (currentValue.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw)
{
deltaSw = update[Indices::waterSwitchIdx];
deltaSo -= deltaSw;
}
if (currentValue.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg)
{
deltaSg = update[Indices::compositionSwitchIdx];
deltaSo -= deltaSg;
}
if (currentValue.primaryVarsMeaningSolvent() == PrimaryVariables::SolventMeaning::Ss) {
deltaSs = update[Indices::solventSaturationIdx];
deltaSo -= deltaSs;
}
// maximum saturation delta
Scalar maxSatDelta = std::max(std::abs(deltaSg), std::abs(deltaSo));
maxSatDelta = std::max(maxSatDelta, std::abs(deltaSw));
maxSatDelta = std::max(maxSatDelta, std::abs(deltaSs));
// scaling factor for saturation deltas to make sure that none of them exceeds
// the specified threshold value.
Scalar satAlpha = 1.0;
if (maxSatDelta > bparams_.dsMax_) {
satAlpha = bparams_.dsMax_ / maxSatDelta;
}
for (int pvIdx = 0; pvIdx < int(numEq); ++pvIdx) {
// calculate the update of the current primary variable. For the black-oil
// model we limit the pressure delta relative to the pressure's current
// absolute value (Default: 30%) and saturation deltas to an absolute change
// (Default: 20%). Further, we ensure that the R factors, solvent
// "saturation" and polymer concentration do not become negative after the
// update.
Scalar delta = update[pvIdx];
// limit pressure delta
if (pvIdx == Indices::pressureSwitchIdx) {
if (std::abs(delta) > bparams_.dpMaxRel_ * currentValue[pvIdx]) {
delta = signum(delta) * bparams_.dpMaxRel_ * currentValue[pvIdx];
}
}
// water saturation delta
else if (pvIdx == Indices::waterSwitchIdx)
if (currentValue.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
delta *= satAlpha;
}
else {
//Ensure Rvw and Rsw factor does not become negative
if (delta > currentValue[ Indices::waterSwitchIdx]) {
delta = currentValue[ Indices::waterSwitchIdx];
}
}
else if (pvIdx == Indices::compositionSwitchIdx) {
// the switching primary variable for composition is tricky because the
// "reasonable" value ranges it exhibits vary widely depending on its
// interpretation since it can represent Sg, Rs or Rv. For now, we only
// limit saturation deltas and ensure that the R factors do not become
// negative.
if (currentValue.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg) {
delta *= satAlpha;
}
else {
//Ensure Rv and Rs factor does not become negative
if (delta > currentValue[Indices::compositionSwitchIdx])
delta = currentValue[Indices::compositionSwitchIdx];
}
}
else if (enableSolvent && pvIdx == Indices::solventSaturationIdx) {
// solvent saturation updates are also subject to the Appleyard chop
if (currentValue.primaryVarsMeaningSolvent() == PrimaryVariables::SolventMeaning::Ss) {
delta *= satAlpha;
} else {
//Ensure Rssolw factor does not become negative
if (delta > currentValue[Indices::solventSaturationIdx])
delta = currentValue[Indices::solventSaturationIdx];
}
}
else if (enableExtbo && pvIdx == Indices::zFractionIdx) {
// z fraction updates are also subject to the Appleyard chop
const auto& curr = currentValue[Indices::zFractionIdx]; // or currentValue[pvIdx] given the block condition
delta = std::clamp(delta, curr - Scalar{1.0}, curr);
}
else if (enablePolymerWeight && pvIdx == Indices::polymerMoleWeightIdx) {
const double sign = delta >= 0. ? 1. : -1.;
// maximum change of polymer molecular weight, the unit is MDa.
// applying this limit to stabilize the simulation. The value itself is still experimental.
const Scalar maxMolarWeightChange = 100.0;
delta = sign * std::min(std::abs(delta), maxMolarWeightChange);
delta *= satAlpha;
}
else if (enableEnergy && pvIdx == Indices::temperatureIdx) {
const double sign = delta >= 0. ? 1. : -1.;
delta = sign * std::min(std::abs(delta), bparams_.maxTempChange_);
}
else if (enableBrine && pvIdx == Indices::saltConcentrationIdx &&
enableSaltPrecipitation &&
currentValue.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
const Scalar maxSaltSaturationChange = 0.1;
const Scalar sign = delta >= 0. ? 1. : -1.;
delta = sign * std::min(std::abs(delta), maxSaltSaturationChange);
}
// do the actual update
nextValue[pvIdx] = currentValue[pvIdx] - delta;
// keep the solvent saturation between 0 and 1
if (enableSolvent && pvIdx == Indices::solventSaturationIdx) {
if (currentValue.primaryVarsMeaningSolvent() == PrimaryVariables::SolventMeaning::Ss) {
nextValue[pvIdx] = std::min(std::max(nextValue[pvIdx], Scalar{0.0}), Scalar{1.0});
}
}
// keep the z fraction between 0 and 1
if (enableExtbo && pvIdx == Indices::zFractionIdx) {
nextValue[pvIdx] = std::min(std::max(nextValue[pvIdx], Scalar{0.0}), Scalar{1.0});
}
// keep the polymer concentration above 0
if (enablePolymer && pvIdx == Indices::polymerConcentrationIdx) {
nextValue[pvIdx] = std::max(nextValue[pvIdx], Scalar{0.0});
}
if (enablePolymerWeight && pvIdx == Indices::polymerMoleWeightIdx) {
nextValue[pvIdx] = std::max(nextValue[pvIdx], Scalar{0.0});
const double polymerConcentration = nextValue[Indices::polymerConcentrationIdx];
if (polymerConcentration < 1.e-10) {
nextValue[pvIdx] = 0.0;
}
}
// keep the foam concentration above 0
if (enableFoam && pvIdx == Indices::foamConcentrationIdx) {
nextValue[pvIdx] = std::max(nextValue[pvIdx], Scalar{0.0});
}
if (enableBrine && pvIdx == Indices::saltConcentrationIdx) {
// keep the salt concentration above 0
if (!enableSaltPrecipitation || (enableSaltPrecipitation && currentValue.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Cs)) {
nextValue[pvIdx] = std::max(nextValue[pvIdx], Scalar{0.0});
}
// keep the salt saturation below upperlimit
if ((enableSaltPrecipitation && currentValue.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp)) {
nextValue[pvIdx] = std::min(nextValue[pvIdx], Scalar{1.0-1.e-8});
}
}
// keep the temperature within given values
if (enableEnergy && pvIdx == Indices::temperatureIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], bparams_.tempMin_, bparams_.tempMax_);
}
if (pvIdx == Indices::pressureSwitchIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], bparams_.pressMin_, bparams_.pressMax_);
}
// Limit the variables to [0, cmax] values to improve the convergence.
// For the microorganisms we set this value equal to the biomass density value.
// For the oxygen and urea we set this value to the maximum injected
// concentration (the urea concentration has been scaled by 10). For
// the biofilm and calcite, we set this value equal to the porosity minus the clogging tolerance.
if (enableMICP && pvIdx == Indices::microbialConcentrationIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], Scalar{0.0}, MICPModule::densityBiofilm());
}
if (enableMICP && pvIdx == Indices::oxygenConcentrationIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], Scalar{0.0}, MICPModule::maximumOxygenConcentration());
}
if (enableMICP && pvIdx == Indices::ureaConcentrationIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], Scalar{0.0}, MICPModule::maximumUreaConcentration());
}
if (enableMICP && pvIdx == Indices::biofilmConcentrationIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], Scalar{0.0}, MICPModule::phi()[globalDofIdx] - MICPModule::toleranceBeforeClogging());
}
if (enableMICP && pvIdx == Indices::calciteConcentrationIdx) {
nextValue[pvIdx] = std::clamp(nextValue[pvIdx], Scalar{0.0}, MICPModule::phi()[globalDofIdx] - MICPModule::toleranceBeforeClogging());
}
}
// switch the new primary variables to something which is physically meaningful.
// use a threshold value after a switch to make it harder to switch back
// immediately.
if (wasSwitched_[globalDofIdx]) {
wasSwitched_[globalDofIdx] = nextValue.adaptPrimaryVariables(this->problem(),
globalDofIdx,
bparams_.waterSaturationMax_,
bparams_.waterOnlyThreshold_,
bparams_.priVarOscilationThreshold_);
}
else {
wasSwitched_[globalDofIdx] = nextValue.adaptPrimaryVariables(this->problem(),
globalDofIdx,
bparams_.waterSaturationMax_,
bparams_.waterOnlyThreshold_);
}
if (wasSwitched_[globalDofIdx]) {
++numPriVarsSwitched_;
}
if (bparams_.projectSaturations_) {
nextValue.chopAndNormalizeSaturations();
}
nextValue.checkDefined();
}
private:
int numPriVarsSwitched_{};
BlackoilNewtonParams<Scalar> bparams_{};
// keep track of cells where the primary variable meaning has changed
// to detect and hinder oscillations
std::vector<bool> wasSwitched_{};
};
} // namespace Opm
#endif // OPM_BLACK_OIL_NEWTHON_METHOD_HPP