mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 16:51:00 -06:00
732 lines
22 KiB
C++
732 lines
22 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2015 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AUTODIFFHELPERS_HEADER_INCLUDED
|
|
#define OPM_AUTODIFFHELPERS_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/grid/UnstructuredGrid.h>
|
|
#include <opm/grid/PinchProcessor.hpp>
|
|
#include <opm/core/props/rock/RockFromDeck.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
// -------------------- class HelperOps --------------------
|
|
|
|
/// Contains vectors and sparse matrices that represent subsets or
|
|
/// operations on (AD or regular) vectors of data.
|
|
struct HelperOps
|
|
{
|
|
typedef Eigen::SparseMatrix<double> M;
|
|
typedef AutoDiffBlock<double>::V V;
|
|
|
|
/// A list of internal faces.
|
|
typedef Eigen::Array<int, Eigen::Dynamic, 1> IFaces;
|
|
IFaces internal_faces;
|
|
|
|
/// Extract for each internal face the difference of its adjacent cells' values (first - second).
|
|
M ngrad;
|
|
/// Extract for each face the difference of its adjacent cells' values (second - first).
|
|
M grad;
|
|
/// Extract for each face the average of its adjacent cells' values.
|
|
M caver;
|
|
/// Extract for each cell the sum of its adjacent interior faces' (signed) values.
|
|
M div;
|
|
/// Extract for each face the difference of its adjacent cells' values (first - second).
|
|
/// For boundary faces, one of the entries per row (corresponding to the outside) is zero.
|
|
M fullngrad;
|
|
/// Extract for each cell the sum of all its adjacent faces' (signed) values.
|
|
M fulldiv;
|
|
|
|
/// Non-neighboring connections
|
|
typedef Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor> TwoColInt;
|
|
TwoColInt nnc_cells;
|
|
|
|
/// The NNC transmissibilities
|
|
V nnc_trans;
|
|
|
|
/// The set of all connections' cells (face or nnc).
|
|
TwoColInt connection_cells;
|
|
|
|
/// Constructs all helper vectors and matrices.
|
|
template<class Grid>
|
|
HelperOps(const Grid& grid, const NNC& nnc = NNC())
|
|
{
|
|
using namespace AutoDiffGrid;
|
|
const int nc = numCells(grid);
|
|
const int nf = numFaces(grid);
|
|
// Define some neighbourhood-derived helper arrays.
|
|
|
|
TwoColInt nbi;
|
|
extractInternalFaces(grid, internal_faces, nbi);
|
|
const int num_internal = internal_faces.size();
|
|
|
|
// handle non-neighboring connections
|
|
const bool has_nnc = nnc.hasNNC();
|
|
int numNNC = nnc.numNNC();
|
|
|
|
// num_connections may also include non-neighboring connections
|
|
const int num_connections = num_internal + numNNC;
|
|
if (has_nnc) {
|
|
const int *cartDims = AutoDiffGrid::cartDims(grid);
|
|
const int numCartesianCells = cartDims[0] * cartDims[1] * cartDims[2];
|
|
|
|
// the nnc's acts on global indicies and must be mapped to cell indicies
|
|
std::vector<int> global2localIdx(numCartesianCells,0);
|
|
for (int i = 0; i< nc; ++i) {
|
|
global2localIdx[ globalCell( grid )[i] ] = i;
|
|
}
|
|
nnc_cells.resize(numNNC,2);
|
|
nnc_trans.resize(numNNC);
|
|
for (int i = 0; i < numNNC; ++i) {
|
|
nnc_cells(i,0) = global2localIdx[nnc.nncdata()[i].cell1];
|
|
nnc_cells(i,1) = global2localIdx[nnc.nncdata()[i].cell2];
|
|
// store the nnc transmissibilities for later usage.
|
|
nnc_trans(i) = nnc.nncdata()[i].trans;
|
|
}
|
|
}
|
|
|
|
|
|
// std::cout << "nbi = \n" << nbi << std::endl;
|
|
// Create matrices.
|
|
ngrad.resize(num_connections, nc);
|
|
caver.resize(num_connections, nc);
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> ngrad_tri;
|
|
std::vector<Tri> caver_tri;
|
|
ngrad_tri.reserve(2*num_connections);
|
|
caver_tri.reserve(2*num_connections);
|
|
for (int i = 0; i < num_internal; ++i) {
|
|
ngrad_tri.emplace_back(i, nbi(i,0), 1.0);
|
|
ngrad_tri.emplace_back(i, nbi(i,1), -1.0);
|
|
caver_tri.emplace_back(i, nbi(i,0), 0.5);
|
|
caver_tri.emplace_back(i, nbi(i,1), 0.5);
|
|
}
|
|
// add contribution from NNC
|
|
if (has_nnc) {
|
|
for (int i = 0; i < numNNC; ++i) {
|
|
ngrad_tri.emplace_back(i+num_internal, nnc_cells(i,0), 1.0);
|
|
ngrad_tri.emplace_back(i+num_internal, nnc_cells(i,1), -1.0);
|
|
caver_tri.emplace_back(i+num_internal, nnc_cells(i,0), 0.5);
|
|
caver_tri.emplace_back(i+num_internal, nnc_cells(i,1), 0.5);
|
|
}
|
|
}
|
|
ngrad.setFromTriplets(ngrad_tri.begin(), ngrad_tri.end());
|
|
caver.setFromTriplets(caver_tri.begin(), caver_tri.end());
|
|
grad = -ngrad;
|
|
div = ngrad.transpose();
|
|
|
|
std::vector<Tri> fullngrad_tri;
|
|
fullngrad_tri.reserve(2*(nf+numNNC));
|
|
typename ADFaceCellTraits<Grid>::Type nb = faceCellsToEigen(grid);
|
|
for (int i = 0; i < nf; ++i) {
|
|
if (nb(i,0) >= 0) {
|
|
fullngrad_tri.emplace_back(i, nb(i,0), 1.0);
|
|
}
|
|
if (nb(i,1) >= 0) {
|
|
fullngrad_tri.emplace_back(i, nb(i,1), -1.0);
|
|
}
|
|
}
|
|
// add contribution from NNC
|
|
if (has_nnc) {
|
|
for (int i = 0; i < numNNC; ++i) {
|
|
fullngrad_tri.emplace_back(i+nf, nnc_cells(i,0), 1.0);
|
|
fullngrad_tri.emplace_back(i+nf, nnc_cells(i,1), -1.0);
|
|
}
|
|
}
|
|
fullngrad.resize(nf+numNNC, nc);
|
|
fullngrad.setFromTriplets(fullngrad_tri.begin(), fullngrad_tri.end());
|
|
fulldiv = fullngrad.transpose();
|
|
|
|
if (has_nnc) {
|
|
connection_cells.resize(nbi.rows() + nnc_cells.rows(), 2);
|
|
connection_cells << nbi, nnc_cells;
|
|
} else {
|
|
connection_cells = nbi;
|
|
}
|
|
}
|
|
};
|
|
// -------------------- upwinding helper class --------------------
|
|
|
|
|
|
/// Upwind selection in absence of counter-current flow (i.e.,
|
|
/// without effects of gravity and/or capillary pressure).
|
|
template <typename Scalar>
|
|
class UpwindSelector {
|
|
public:
|
|
typedef AutoDiffBlock<Scalar> ADB;
|
|
|
|
template<class Grid>
|
|
UpwindSelector(const Grid& g,
|
|
const HelperOps& h,
|
|
const typename ADB::V& ifaceflux)
|
|
{
|
|
using namespace AutoDiffGrid;
|
|
typedef HelperOps::IFaces::Index IFIndex;
|
|
const IFIndex nif = h.internal_faces.size();
|
|
typename ADFaceCellTraits<Grid>::Type
|
|
face_cells = faceCellsToEigen(g);
|
|
|
|
// num connections may possibly include NNCs
|
|
int num_nnc = h.nnc_trans.size();
|
|
int num_connections = nif + num_nnc;
|
|
assert(num_connections == ifaceflux.size());
|
|
|
|
// Define selector structure.
|
|
typedef typename Eigen::Triplet<Scalar> Triplet;
|
|
std::vector<Triplet> s; s.reserve(num_connections);
|
|
for (IFIndex iface = 0; iface < nif; ++iface) {
|
|
const int f = h.internal_faces[iface];
|
|
const int c1 = face_cells(f,0);
|
|
const int c2 = face_cells(f,1);
|
|
|
|
assert ((c1 >= 0) && (c2 >= 0));
|
|
|
|
// Select upwind cell.
|
|
const int c = (ifaceflux[iface] >= 0) ? c1 : c2;
|
|
|
|
s.push_back(Triplet(iface, c, Scalar(1)));
|
|
}
|
|
if (num_nnc > 0) {
|
|
for (int i = 0; i < num_nnc; ++i) {
|
|
const int c = (ifaceflux[i+nif] >= 0) ? h.nnc_cells(i,0) : h.nnc_cells(i,1);
|
|
s.push_back(Triplet(i+nif,c,Scalar(1)));
|
|
}
|
|
}
|
|
|
|
// Assemble explicit selector operator.
|
|
select_.resize(num_connections, numCells(g));
|
|
select_.setFromTriplets(s.begin(), s.end());
|
|
}
|
|
|
|
/// Apply selector to multiple per-cell quantities.
|
|
std::vector<ADB>
|
|
select(const std::vector<ADB>& xc) const
|
|
{
|
|
// Absence of counter-current flow means that the same
|
|
// selector applies to all quantities, 'x', defined per
|
|
// cell.
|
|
std::vector<ADB> xf; xf.reserve(xc.size());
|
|
for (typename std::vector<ADB>::const_iterator
|
|
b = xc.begin(), e = xc.end(); b != e; ++b)
|
|
{
|
|
xf.push_back(select_ * (*b));
|
|
}
|
|
|
|
return xf;
|
|
}
|
|
|
|
/// Apply selector to single per-cell ADB quantity.
|
|
ADB select(const ADB& xc) const
|
|
{
|
|
return select_*xc;
|
|
}
|
|
|
|
/// Apply selector to single per-cell constant quantity.
|
|
typename ADB::V select(const typename ADB::V& xc) const
|
|
{
|
|
return (select_*xc.matrix()).array();
|
|
}
|
|
|
|
private:
|
|
Eigen::SparseMatrix<double> select_;
|
|
};
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
template <typename Scalar, class IntVec>
|
|
typename Eigen::SparseMatrix<Scalar>
|
|
constructSupersetSparseMatrix(const int full_size, const IntVec& indices)
|
|
{
|
|
const int subset_size = indices.size();
|
|
|
|
if (subset_size == 0) {
|
|
Eigen::SparseMatrix<Scalar> mat(full_size, 0);
|
|
return mat;
|
|
}
|
|
|
|
Eigen::SparseMatrix<Scalar> mat(full_size, subset_size);
|
|
mat.reserve(Eigen::VectorXi::Constant(subset_size, 1));
|
|
for (int i = 0; i < subset_size; ++i) {
|
|
mat.insert(indices[i], i) = 1;
|
|
}
|
|
return mat;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
|
|
|
|
/// Returns x(indices).
|
|
template <typename Scalar, class IntVec>
|
|
Eigen::Array<Scalar, Eigen::Dynamic, 1>
|
|
subset(const Eigen::Array<Scalar, Eigen::Dynamic, 1>& x,
|
|
const IntVec& indices)
|
|
{
|
|
typedef typename Eigen::Array<Scalar, Eigen::Dynamic, 1>::Index Index;
|
|
const Index size = indices.size();
|
|
Eigen::Array<Scalar, Eigen::Dynamic, 1> ret( size );
|
|
for( Index i=0; i<size; ++i )
|
|
ret[ i ] = x[ indices[ i ] ];
|
|
|
|
return std::move(ret);
|
|
}
|
|
|
|
/// Returns x(indices).
|
|
template <typename Scalar, class IntVec>
|
|
AutoDiffBlock<Scalar>
|
|
subset(const AutoDiffBlock<Scalar>& x,
|
|
const IntVec& indices)
|
|
{
|
|
const Eigen::SparseMatrix<Scalar> sub
|
|
= constructSupersetSparseMatrix<Scalar>(x.value().size(), indices).transpose().eval();
|
|
return sub * x;
|
|
}
|
|
|
|
|
|
/// Returns v where v(indices) == x, v(!indices) == 0 and v.size() == n.
|
|
template <typename Scalar, class IntVec>
|
|
AutoDiffBlock<Scalar>
|
|
superset(const AutoDiffBlock<Scalar>& x,
|
|
const IntVec& indices,
|
|
const int n)
|
|
{
|
|
return constructSupersetSparseMatrix<Scalar>(n, indices) * x;
|
|
}
|
|
|
|
|
|
|
|
/// Returns v where v(indices) == x, v(!indices) == 0 and v.size() == n.
|
|
template <typename Scalar, class IntVec>
|
|
Eigen::Array<Scalar, Eigen::Dynamic, 1>
|
|
superset(const Eigen::Array<Scalar, Eigen::Dynamic, 1>& x,
|
|
const IntVec& indices,
|
|
const int n)
|
|
{
|
|
return constructSupersetSparseMatrix<Scalar>(n, indices) * x.matrix();
|
|
}
|
|
|
|
|
|
|
|
/// Construct square sparse matrix with the
|
|
/// elements of d on the diagonal.
|
|
/// Need to mark this as inline since it is defined in a header and not a template.
|
|
inline
|
|
Eigen::SparseMatrix<double>
|
|
spdiag(const AutoDiffBlock<double>::V& d)
|
|
{
|
|
typedef Eigen::SparseMatrix<double> M;
|
|
|
|
const int n = d.size();
|
|
M mat(n, n);
|
|
mat.reserve(Eigen::ArrayXi::Ones(n, 1));
|
|
for (M::Index i = 0; i < n; ++i) {
|
|
mat.insert(i, i) = d[i];
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Selection. Choose first of two elements if selection basis element is nonnegative.
|
|
template <typename Scalar>
|
|
class Selector {
|
|
public:
|
|
typedef AutoDiffBlock<Scalar> ADB;
|
|
|
|
enum CriterionForLeftElement { GreaterEqualZero, GreaterZero, Zero, NotEqualZero, LessZero, LessEqualZero, NotNaN };
|
|
|
|
Selector(const typename ADB::V& selection_basis,
|
|
CriterionForLeftElement crit = GreaterEqualZero)
|
|
{
|
|
using std::isnan;
|
|
// Define selector structure.
|
|
const int n = selection_basis.size();
|
|
// Over-reserving so we do not have to count.
|
|
left_elems_.reserve(n);
|
|
right_elems_.reserve(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
bool chooseleft = false;
|
|
switch (crit) {
|
|
case GreaterEqualZero:
|
|
chooseleft = selection_basis[i] >= 0.0;
|
|
break;
|
|
case GreaterZero:
|
|
chooseleft = selection_basis[i] > 0.0;
|
|
break;
|
|
case Zero:
|
|
chooseleft = selection_basis[i] == 0.0;
|
|
break;
|
|
case NotEqualZero:
|
|
chooseleft = selection_basis[i] != 0.0;
|
|
break;
|
|
case LessZero:
|
|
chooseleft = selection_basis[i] < 0.0;
|
|
break;
|
|
case LessEqualZero:
|
|
chooseleft = selection_basis[i] <= 0.0;
|
|
break;
|
|
case NotNaN:
|
|
chooseleft = !isnan(selection_basis[i]);
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "No such criterion: " << crit);
|
|
}
|
|
if (chooseleft) {
|
|
left_elems_.push_back(i);
|
|
} else {
|
|
right_elems_.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Apply selector to ADB quantities.
|
|
ADB select(const ADB& x1, const ADB& x2) const
|
|
{
|
|
if (right_elems_.empty()) {
|
|
return x1;
|
|
} else if (left_elems_.empty()) {
|
|
return x2;
|
|
} else {
|
|
return superset(subset(x1, left_elems_), left_elems_, x1.size())
|
|
+ superset(subset(x2, right_elems_), right_elems_, x2.size());
|
|
}
|
|
}
|
|
|
|
/// Apply selector to ADB quantities.
|
|
typename ADB::V select(const typename ADB::V& x1, const typename ADB::V& x2) const
|
|
{
|
|
if (right_elems_.empty()) {
|
|
return x1;
|
|
} else if (left_elems_.empty()) {
|
|
return x2;
|
|
} else {
|
|
return superset(subset(x1, left_elems_), left_elems_, x1.size())
|
|
+ superset(subset(x2, right_elems_), right_elems_, x2.size());
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<int> left_elems_;
|
|
std::vector<int> right_elems_;
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Returns the input expression, but with all Jacobians collapsed to one.
|
|
template <class Matrix>
|
|
inline
|
|
void
|
|
collapseJacs(const AutoDiffBlock<double>& x, Matrix& jacobian)
|
|
{
|
|
typedef AutoDiffBlock<double> ADB;
|
|
const int nb = x.numBlocks();
|
|
typedef Eigen::Triplet<double> Tri;
|
|
int nnz = 0;
|
|
for (int block = 0; block < nb; ++block) {
|
|
nnz += x.derivative()[block].nonZeros();
|
|
}
|
|
std::vector<Tri> t;
|
|
t.reserve(nnz);
|
|
int block_col_start = 0;
|
|
for (int block = 0; block < nb; ++block) {
|
|
const ADB::M& jac1 = x.derivative()[block];
|
|
Eigen::SparseMatrix<double> jac;
|
|
jac1.toSparse(jac);
|
|
for (Eigen::SparseMatrix<double>::Index k = 0; k < jac.outerSize(); ++k) {
|
|
for (Eigen::SparseMatrix<double>::InnerIterator i(jac, k); i ; ++i) {
|
|
if (i.value() != 0.0) {
|
|
t.push_back(Tri(i.row(),
|
|
i.col() + block_col_start,
|
|
i.value()));
|
|
}
|
|
}
|
|
}
|
|
block_col_start += jac.cols();
|
|
}
|
|
// Build final jacobian.
|
|
jacobian = Matrix(x.size(), block_col_start);
|
|
jacobian.setFromTriplets(t.begin(), t.end());
|
|
}
|
|
|
|
|
|
|
|
/// Returns the input expression, but with all Jacobians collapsed to one.
|
|
inline
|
|
AutoDiffBlock<double>
|
|
collapseJacs(const AutoDiffBlock<double>& x)
|
|
{
|
|
Eigen::SparseMatrix<double> comb_jac;
|
|
collapseJacs( x, comb_jac );
|
|
// Build final jacobian.
|
|
typedef AutoDiffBlock<double> ADB;
|
|
std::vector<ADB::M> jacs(1);
|
|
jacs[0] = AutoDiffMatrix(std::move(comb_jac));
|
|
ADB::V val = x.value();
|
|
return ADB::function(std::move(val), std::move(jacs));
|
|
}
|
|
|
|
|
|
|
|
/// Returns the vertical concatenation [ x; y ] of the inputs.
|
|
inline
|
|
AutoDiffBlock<double>
|
|
vertcat(const AutoDiffBlock<double>& x,
|
|
const AutoDiffBlock<double>& y)
|
|
{
|
|
const int nx = x.size();
|
|
const int ny = y.size();
|
|
const int n = nx + ny;
|
|
std::vector<int> xind(nx);
|
|
for (int i = 0; i < nx; ++i) {
|
|
xind[i] = i;
|
|
}
|
|
std::vector<int> yind(ny);
|
|
for (int i = 0; i < ny; ++i) {
|
|
yind[i] = nx + i;
|
|
}
|
|
return superset(x, xind, n) + superset(y, yind, n);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Returns the vertical concatenation [ x[0]; x[1]; ...; x[n-1] ] of the inputs.
|
|
/// This function also collapses the Jacobian matrices into one like collapsJacs().
|
|
inline
|
|
AutoDiffBlock<double>
|
|
vertcatCollapseJacs(const std::vector<AutoDiffBlock<double> >& x)
|
|
{
|
|
typedef AutoDiffBlock<double> ADB;
|
|
if (x.empty()) {
|
|
return ADB::null();
|
|
}
|
|
|
|
// Count sizes, nonzeros.
|
|
const int nx = x.size();
|
|
int size = 0;
|
|
int nnz = 0;
|
|
int elem_with_deriv = -1;
|
|
int num_blocks = 0;
|
|
for (int elem = 0; elem < nx; ++elem) {
|
|
size += x[elem].size();
|
|
if (x[elem].derivative().empty()) {
|
|
// No nnz contributions from this element.
|
|
continue;
|
|
} else {
|
|
if (elem_with_deriv == -1) {
|
|
elem_with_deriv = elem;
|
|
num_blocks = x[elem].numBlocks();
|
|
}
|
|
}
|
|
if (x[elem].blockPattern() != x[elem_with_deriv].blockPattern()) {
|
|
OPM_THROW(std::runtime_error, "vertcatCollapseJacs(): all arguments must have the same block pattern");
|
|
}
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
nnz += x[elem].derivative()[block].nonZeros();
|
|
}
|
|
}
|
|
int num_cols = 0;
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
num_cols += x[elem_with_deriv].derivative()[block].cols();
|
|
}
|
|
|
|
// Build value for result.
|
|
ADB::V val(size);
|
|
int pos = 0;
|
|
for (int elem = 0; elem < nx; ++elem) {
|
|
const int loc_size = x[elem].size();
|
|
val.segment(pos, loc_size) = x[elem].value();
|
|
pos += loc_size;
|
|
}
|
|
assert(pos == size);
|
|
|
|
// Return a constant if we have no derivatives at all.
|
|
if (num_blocks == 0) {
|
|
return ADB::constant(std::move(val));
|
|
}
|
|
|
|
// Set up for batch insertion of all Jacobian elements.
|
|
typedef Eigen::SparseMatrix<double> M;
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> t;
|
|
t.reserve(nnz);
|
|
{
|
|
int block_row_start = 0;
|
|
M jac;
|
|
for (int elem = 0; elem < nx; ++elem) {
|
|
int block_col_start = 0;
|
|
if (!x[elem].derivative().empty()) {
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
x[elem].derivative()[block].toSparse(jac);
|
|
for (M::Index k = 0; k < jac.outerSize(); ++k) {
|
|
for (M::InnerIterator i(jac, k); i ; ++i) {
|
|
t.push_back(Tri(i.row() + block_row_start,
|
|
i.col() + block_col_start,
|
|
i.value()));
|
|
}
|
|
}
|
|
block_col_start += jac.cols();
|
|
}
|
|
}
|
|
block_row_start += x[elem].size();
|
|
}
|
|
}
|
|
|
|
// Build final jacobian.
|
|
M comb_jac = M(size, num_cols);
|
|
comb_jac.reserve(nnz);
|
|
comb_jac.setFromTriplets(t.begin(), t.end());
|
|
std::vector<ADB::M> jac(1);
|
|
jac[0] = ADB::M(std::move(comb_jac));
|
|
|
|
// Use move semantics to return result efficiently.
|
|
return ADB::function(std::move(val), std::move(jac));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Span
|
|
{
|
|
public:
|
|
explicit Span(const int num)
|
|
: num_(num),
|
|
stride_(1),
|
|
start_(0)
|
|
{
|
|
}
|
|
Span(const int num, const int stride, const int start)
|
|
: num_(num),
|
|
stride_(stride),
|
|
start_(start)
|
|
{
|
|
}
|
|
int operator[](const int i) const
|
|
{
|
|
assert(i >= 0 && i < num_);
|
|
return start_ + i*stride_;
|
|
}
|
|
int size() const
|
|
{
|
|
return num_;
|
|
}
|
|
|
|
|
|
class SpanIterator
|
|
{
|
|
public:
|
|
SpanIterator(const Span* span, const int index)
|
|
: span_(span),
|
|
index_(index)
|
|
{
|
|
}
|
|
SpanIterator operator++()
|
|
{
|
|
++index_;
|
|
return *this;
|
|
}
|
|
SpanIterator operator++(int)
|
|
{
|
|
SpanIterator before_increment(*this);
|
|
++index_;
|
|
return before_increment;
|
|
}
|
|
bool operator<(const SpanIterator& rhs) const
|
|
{
|
|
assert(span_ == rhs.span_);
|
|
return index_ < rhs.index_;
|
|
}
|
|
bool operator==(const SpanIterator& rhs) const
|
|
{
|
|
assert(span_ == rhs.span_);
|
|
return index_ == rhs.index_;
|
|
}
|
|
bool operator!=(const SpanIterator& rhs) const
|
|
{
|
|
assert(span_ == rhs.span_);
|
|
return index_ != rhs.index_;
|
|
}
|
|
int operator*()
|
|
{
|
|
return (*span_)[index_];
|
|
}
|
|
private:
|
|
const Span* span_;
|
|
int index_;
|
|
};
|
|
|
|
typedef SpanIterator iterator;
|
|
typedef SpanIterator const_iterator;
|
|
|
|
SpanIterator begin() const
|
|
{
|
|
return SpanIterator(this, 0);
|
|
}
|
|
|
|
SpanIterator end() const
|
|
{
|
|
return SpanIterator(this, num_);
|
|
}
|
|
|
|
bool operator==(const Span& rhs)
|
|
{
|
|
return num_ == rhs.num_ && start_ == rhs.start_ && stride_ == rhs.stride_;
|
|
}
|
|
|
|
private:
|
|
const int num_;
|
|
const int stride_;
|
|
const int start_;
|
|
};
|
|
|
|
|
|
|
|
/// Return a vector of (-1.0, 0.0 or 1.0), depending on sign per element.
|
|
inline Eigen::ArrayXd sign (const Eigen::ArrayXd& x)
|
|
{
|
|
const int n = x.size();
|
|
Eigen::ArrayXd retval(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
retval[i] = x[i] < 0.0 ? -1.0 : (x[i] > 0.0 ? 1.0 : 0.0);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_AUTODIFFHELPERS_HEADER_INCLUDED
|