opm-simulators/opm/simulators/wells/StandardWellConnections.cpp
2022-11-25 12:54:56 +01:00

80 lines
2.8 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellConnections.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
namespace Opm
{
template<class Scalar>
StandardWellConnections<Scalar>::
StandardWellConnections(const WellInterfaceGeneric& well)
: perf_densities_(well_.numPerfs())
, perf_pressure_diffs_(well_.numPerfs())
, well_(well)
{
}
template<class Scalar>
void
StandardWellConnections<Scalar>::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = well_.numPerfs();
perf_pressure_diffs_.resize(nperf, 0.0);
auto z_above = well_.parallelWellInfo().communicateAboveValues(well_.refDepth(), well_.perfDepth());
for (int perf = 0; perf < nperf; ++perf) {
const double dz = well_.perfDepth()[perf] - z_above[perf];
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * well_.gravity();
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
well_.parallelWellInfo().partialSumPerfValues(beg, end);
}
template class StandardWellConnections<double>;
}