mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 09:51:57 -06:00
1509 lines
52 KiB
C++
1509 lines
52 KiB
C++
|
|
|
|
|
|
namespace Opm {
|
|
template<typename TypeTag>
|
|
BlackoilWellModel<TypeTag>::
|
|
BlackoilWellModel(Simulator& ebosSimulator)
|
|
: ebosSimulator_(ebosSimulator)
|
|
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
|
|
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
|
|
{
|
|
terminal_output_ = false;
|
|
if (ebosSimulator.gridView().comm().rank() == 0)
|
|
terminal_output_ = EWOMS_GET_PARAM(TypeTag, bool, EnableTerminalOutput);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
init(const Opm::EclipseState& eclState, const Opm::Schedule& schedule)
|
|
{
|
|
gravity_ = ebosSimulator_.problem().gravity()[2];
|
|
|
|
extractLegacyCellPvtRegionIndex_();
|
|
extractLegacyDepth_();
|
|
|
|
phase_usage_ = phaseUsageFromDeck(eclState);
|
|
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
|
|
// calculate the number of elements of the compressed sequential grid. this needs
|
|
// to be done in two steps because the dune communicator expects a reference as
|
|
// argument for sum()
|
|
number_of_cells_ = gridView.size(/*codim=*/0);
|
|
global_nc_ = gridView.comm().sum(number_of_cells_);
|
|
gravity_ = ebosSimulator_.problem().gravity()[2];
|
|
|
|
extractLegacyCellPvtRegionIndex_();
|
|
extractLegacyDepth_();
|
|
initial_step_ = true;
|
|
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& cartDims = Opm::UgGridHelpers::cartDims(grid);
|
|
setupCartesianToCompressed_(Opm::UgGridHelpers::globalCell(grid),
|
|
cartDims[0]*cartDims[1]*cartDims[2]);
|
|
|
|
// add the eWoms auxiliary module for the wells to the list
|
|
ebosSimulator_.model().addAuxiliaryModule(this);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
addNeighbors(std::vector<NeighborSet>& neighbors) const
|
|
{
|
|
if (!param_.matrix_add_well_contributions_) {
|
|
return;
|
|
}
|
|
|
|
// Create cartesian to compressed mapping
|
|
int last_time_step = schedule().getTimeMap().size() - 1;
|
|
const auto& schedule_wells = schedule().getWells();
|
|
const auto& cartesianSize = Opm::UgGridHelpers::cartDims(grid());
|
|
|
|
// initialize the additional cell connections introduced by wells.
|
|
for (const auto well : schedule_wells)
|
|
{
|
|
std::vector<int> wellCells;
|
|
// All possible connections of the well
|
|
const auto& connectionSet = well->getConnections(last_time_step);
|
|
wellCells.reserve(connectionSet.size());
|
|
|
|
for ( size_t c=0; c < connectionSet.size(); c++ )
|
|
{
|
|
const auto& connection = connectionSet.get(c);
|
|
int i = connection.getI();
|
|
int j = connection.getJ();
|
|
int k = connection.getK();
|
|
int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k);
|
|
int compressed_idx = cartesian_to_compressed_.at(cart_grid_idx);
|
|
|
|
if ( compressed_idx >= 0 ) { // Ignore connections in inactive/remote cells.
|
|
wellCells.push_back(compressed_idx);
|
|
}
|
|
}
|
|
|
|
for (int cellIdx : wellCells) {
|
|
neighbors[cellIdx].insert(wellCells.begin(),
|
|
wellCells.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
linearize(JacobianMatrix& mat , GlobalEqVector& res)
|
|
{
|
|
if (!localWellsActive())
|
|
return;
|
|
|
|
// we don't what to add the schur complement
|
|
// here since it affects the getConvergence method
|
|
/*
|
|
for (const auto& well: well_container_) {
|
|
if (param_.matrix_add_well_contributions_)
|
|
well->addWellContributions(mat);
|
|
|
|
// applying the well residual to reservoir residuals
|
|
// r = r - duneC_^T * invDuneD_ * resWell_
|
|
well->apply(res);
|
|
}
|
|
*/
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
beginReportStep(const int timeStepIdx)
|
|
{
|
|
const Grid& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& defunct_well_names = ebosSimulator_.vanguard().defunctWellNames();
|
|
const auto& eclState = ebosSimulator_.vanguard().eclState();
|
|
wells_ecl_ = schedule().getWells(timeStepIdx);
|
|
|
|
// Create wells and well state.
|
|
// Pass empty dynamicListEconLimited class
|
|
// The closing of wells due to limites is
|
|
// handled by the wellTestState class
|
|
DynamicListEconLimited dynamic_list_econ_limited;
|
|
wells_manager_.reset( new WellsManager (eclState,
|
|
schedule(),
|
|
timeStepIdx,
|
|
Opm::UgGridHelpers::numCells(grid),
|
|
Opm::UgGridHelpers::globalCell(grid),
|
|
Opm::UgGridHelpers::cartDims(grid),
|
|
Opm::UgGridHelpers::dimensions(grid),
|
|
Opm::UgGridHelpers::cell2Faces(grid),
|
|
Opm::UgGridHelpers::beginFaceCentroids(grid),
|
|
dynamic_list_econ_limited,
|
|
grid.comm().size() > 1,
|
|
defunct_well_names) );
|
|
|
|
// Wells are active if they are active wells on at least
|
|
// one process.
|
|
wells_active_ = localWellsActive() ? 1 : 0;
|
|
wells_active_ = grid.comm().max(wells_active_);
|
|
|
|
// The well state initialize bhp with the cell pressure in the top cell.
|
|
// We must therefore provide it with updated cell pressures
|
|
size_t nc = number_of_cells_;
|
|
std::vector<double> cellPressures(nc, 0.0);
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator_.vanguard().gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity) {
|
|
continue;
|
|
}
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
cellPressures[cellIdx] = p;
|
|
}
|
|
well_state_.init(wells(), cellPressures, &previous_well_state_, phase_usage_);
|
|
|
|
// handling MS well related
|
|
if (param_.use_multisegment_well_) { // if we use MultisegmentWell model
|
|
for (const auto& well : wells_ecl_) {
|
|
// TODO: this is acutally not very accurate, because sometimes a deck just claims a MS well
|
|
// while keep the well shut. More accurately, we should check if the well exisits in the Wells
|
|
// structure here
|
|
if (well->isMultiSegment(timeStepIdx) ) { // there is one well is MS well
|
|
well_state_.initWellStateMSWell(wells(), wells_ecl_, timeStepIdx, phase_usage_, previous_well_state_);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// update the previous well state. This is used to restart failed steps.
|
|
previous_well_state_ = well_state_;
|
|
|
|
// Compute reservoir volumes for RESV controls.
|
|
rateConverter_.reset(new RateConverterType (phase_usage_,
|
|
std::vector<int>(number_of_cells_, 0)));
|
|
computeRESV(timeStepIdx);
|
|
|
|
// update VFP properties
|
|
vfp_properties_.reset (new VFPProperties (
|
|
schedule().getVFPInjTables(timeStepIdx),
|
|
schedule().getVFPProdTables(timeStepIdx)) );
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
// called at the beginning of a time step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
beginTimeStep() {
|
|
well_state_ = previous_well_state_;
|
|
|
|
const int reportStepIdx = ebosSimulator_.episodeIndex();
|
|
const double simulationTime = ebosSimulator_.time();
|
|
|
|
// test wells
|
|
wellTesting(reportStepIdx, simulationTime);
|
|
|
|
// create the well container
|
|
well_container_ = createWellContainer(reportStepIdx);
|
|
|
|
// do the initialization for all the wells
|
|
// TODO: to see whether we can postpone of the intialization of the well containers to
|
|
// optimize the usage of the following several member variables
|
|
for (auto& well : well_container_) {
|
|
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
|
|
}
|
|
|
|
// calculate the efficiency factors for each well
|
|
calculateEfficiencyFactors();
|
|
|
|
if (has_polymer_)
|
|
{
|
|
const Grid& grid = ebosSimulator_.vanguard().grid();
|
|
if (PolymerModule::hasPlyshlog()) {
|
|
computeRepRadiusPerfLength(grid);
|
|
}
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->setVFPProperties(vfp_properties_.get());
|
|
}
|
|
|
|
// Close completions due to economical reasons
|
|
for (auto& well : well_container_) {
|
|
well->closeCompletions(wellTestState_);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx, const double simulationTime) {
|
|
const auto& wtest_config = schedule().wtestConfig(timeStepIdx);
|
|
if (wtest_config.size() == 0) { // there is no WTEST request
|
|
return;
|
|
}
|
|
|
|
const auto& wellsForTesting = wellTestState_.updateWell(wtest_config, simulationTime);
|
|
if (wellsForTesting.size() == 0) { // there is no well available for WTEST at the moment
|
|
return;
|
|
}
|
|
|
|
// average B factors are required for the convergence checking of well equations
|
|
std::vector< Scalar > B_avg(numComponents(), Scalar() );
|
|
computeAverageFormationFactor(B_avg);
|
|
|
|
for (const auto& testWell : wellsForTesting) {
|
|
const std::string& well_name = testWell.first;
|
|
const std::string msg = std::string("well ") + well_name + std::string(" is tested");
|
|
OpmLog::info(msg);
|
|
|
|
// this is the well we will test
|
|
WellInterfacePtr well = createWellForWellTest(well_name, timeStepIdx);
|
|
|
|
// some preparation before the well can be used
|
|
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
|
|
const WellNode& well_node = wellCollection().findWellNode(well_name);
|
|
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
|
|
well->setWellEfficiencyFactor(well_efficiency_factor);
|
|
well->setVFPProperties(vfp_properties_.get());
|
|
|
|
const WellTestConfig::Reason testing_reason = testWell.second;
|
|
|
|
well->wellTesting(ebosSimulator_, B_avg, simulationTime, timeStepIdx, terminal_output_,
|
|
testing_reason, well_state_, wellTestState_);
|
|
}
|
|
}
|
|
|
|
// called at the end of a report step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
endReportStep() {
|
|
}
|
|
|
|
// called at the end of a report step
|
|
template<typename TypeTag>
|
|
const SimulatorReport&
|
|
BlackoilWellModel<TypeTag>::
|
|
lastReport() const {return last_report_; }
|
|
|
|
// called at the end of a time step
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
timeStepSucceeded(const double& simulationTime) {
|
|
// TODO: when necessary
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
for (const auto& well : well_container_) {
|
|
well->calculateReservoirRates(well_state_);
|
|
}
|
|
updateWellTestState(simulationTime, wellTestState_);
|
|
previous_well_state_ = well_state_;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
template <class Context>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeTotalRatesForDof(RateVector& rate,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
rate = 0;
|
|
int elemIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
for (const auto& well : well_container_)
|
|
well->addCellRates(rate, elemIdx);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initFromRestartFile(const RestartValue& restartValues)
|
|
{
|
|
// gives a dummy dynamic_list_econ_limited
|
|
DynamicListEconLimited dummyListEconLimited;
|
|
const auto& defunctWellNames = ebosSimulator_.vanguard().defunctWellNames();
|
|
WellsManager wellsmanager(eclState(),
|
|
schedule(),
|
|
// The restart step value is used to identify wells present at the given
|
|
// time step. Wells that are added at the same time step as RESTART is initiated
|
|
// will not be present in a restart file. Use the previous time step to retrieve
|
|
// wells that have information written to the restart file.
|
|
std::max(eclState().getInitConfig().getRestartStep() - 1, 0),
|
|
Opm::UgGridHelpers::numCells(grid()),
|
|
Opm::UgGridHelpers::globalCell(grid()),
|
|
Opm::UgGridHelpers::cartDims(grid()),
|
|
Opm::UgGridHelpers::dimensions(grid()),
|
|
Opm::UgGridHelpers::cell2Faces(grid()),
|
|
Opm::UgGridHelpers::beginFaceCentroids(grid()),
|
|
dummyListEconLimited,
|
|
grid().comm().size() > 1,
|
|
defunctWellNames);
|
|
|
|
const Wells* wells = wellsmanager.c_wells();
|
|
|
|
const int nw = wells->number_of_wells;
|
|
if (nw > 0) {
|
|
auto phaseUsage = phaseUsageFromDeck(eclState());
|
|
size_t numCells = Opm::UgGridHelpers::numCells(grid());
|
|
well_state_.resize(wells, numCells, phaseUsage); //Resize for restart step
|
|
wellsToState(restartValues.wells, phaseUsage, well_state_);
|
|
previous_well_state_ = well_state_;
|
|
}
|
|
initial_step_ = false;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::vector<typename BlackoilWellModel<TypeTag>::WellInterfacePtr >
|
|
BlackoilWellModel<TypeTag>::
|
|
createWellContainer(const int time_step)
|
|
{
|
|
std::vector<WellInterfacePtr> well_container;
|
|
|
|
const int nw = numWells();
|
|
|
|
if (nw > 0) {
|
|
well_container.reserve(nw);
|
|
|
|
// With the following way, it will have the same order with wells struct
|
|
// Hopefully, it can generate the same residual history with master branch
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string well_name = std::string(wells()->name[w]);
|
|
|
|
// finding the location of the well in wells_ecl
|
|
const int nw_wells_ecl = wells_ecl_.size();
|
|
int index_well = 0;
|
|
for (; index_well < nw_wells_ecl; ++index_well) {
|
|
if (well_name == wells_ecl_[index_well]->name()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// It should be able to find in wells_ecl.
|
|
if (index_well == nw_wells_ecl) {
|
|
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
|
|
}
|
|
|
|
const Well* well_ecl = wells_ecl_[index_well];
|
|
|
|
// well is closed due to economical reasons
|
|
if (wellTestState_.hasWell(well_name, WellTestConfig::Reason::ECONOMIC)) {
|
|
if( well_ecl->getAutomaticShutIn() ) {
|
|
// shut wells are not added to the well container
|
|
well_state_.bhp()[w] = 0;
|
|
const int np = numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state_.wellRates()[np * w + p] = 0;
|
|
}
|
|
continue;
|
|
}
|
|
else {
|
|
// close wells are added to the container but marked as closed
|
|
struct WellControls* well_controls = wells()->ctrls[w];
|
|
well_controls_stop_well(well_controls);
|
|
}
|
|
}
|
|
|
|
// Use the pvtRegionIdx from the top cell
|
|
const int well_cell_top = wells()->well_cells[wells()->well_connpos[w]];
|
|
const int pvtreg = pvt_region_idx_[well_cell_top];
|
|
|
|
if ( !well_ecl->isMultiSegment(time_step) || !param_.use_multisegment_well_) {
|
|
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells(),
|
|
param_, *rateConverter_, pvtreg, numComponents() ) );
|
|
} else {
|
|
well_container.emplace_back(new MultisegmentWell<TypeTag>(well_ecl, time_step, wells(),
|
|
param_, *rateConverter_, pvtreg, numComponents() ) );
|
|
}
|
|
}
|
|
}
|
|
return well_container;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename BlackoilWellModel<TypeTag>::WellInterfacePtr
|
|
BlackoilWellModel<TypeTag>::
|
|
createWellForWellTest(const std::string& well_name,
|
|
const int report_step) const
|
|
{
|
|
// Finding the location of the well in wells_ecl
|
|
const int nw_wells_ecl = wells_ecl_.size();
|
|
int index_well_ecl = 0;
|
|
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
|
|
if (well_name == wells_ecl_[index_well_ecl]->name()) {
|
|
break;
|
|
}
|
|
}
|
|
// It should be able to find in wells_ecl.
|
|
if (index_well_ecl == nw_wells_ecl) {
|
|
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
|
|
}
|
|
|
|
const Well* well_ecl = wells_ecl_[index_well_ecl];
|
|
|
|
// Finding the location of the well in wells struct.
|
|
const int nw = numWells();
|
|
int well_index_wells = -999;
|
|
for (int w = 0; w < nw; ++w) {
|
|
if (well_name == std::string(wells()->name[w])) {
|
|
well_index_wells = w;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (well_index_wells < 0) {
|
|
OPM_THROW(std::logic_error, "Could not find the well " << well_name << " in the well struct ");
|
|
}
|
|
|
|
// Use the pvtRegionIdx from the top cell
|
|
const int well_cell_top = wells()->well_cells[wells()->well_connpos[well_index_wells]];
|
|
const int pvtreg = pvt_region_idx_[well_cell_top];
|
|
|
|
if ( !well_ecl->isMultiSegment(report_step) || !param_.use_multisegment_well_) {
|
|
return WellInterfacePtr(new StandardWell<TypeTag>(well_ecl, report_step, wells(),
|
|
param_, *rateConverter_, pvtreg, numComponents() ) );
|
|
} else {
|
|
return WellInterfacePtr(new MultisegmentWell<TypeTag>(well_ecl, report_step, wells(),
|
|
param_, *rateConverter_, pvtreg, numComponents() ) );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assemble(const int iterationIdx,
|
|
const double dt)
|
|
{
|
|
|
|
|
|
last_report_ = SimulatorReport();
|
|
|
|
if ( ! wellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
updatePerforationIntensiveQuantities();
|
|
|
|
if (iterationIdx == 0) {
|
|
calculateExplicitQuantities();
|
|
prepareTimeStep();
|
|
}
|
|
|
|
updateWellControls();
|
|
// Set the well primary variables based on the value of well solutions
|
|
initPrimaryVariablesEvaluation();
|
|
|
|
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
|
|
// solve the well equations as a pre-processing step
|
|
last_report_ = solveWellEq(dt);
|
|
|
|
if (initial_step_) {
|
|
// update the explicit quantities to get the initial fluid distribution in the well correct.
|
|
calculateExplicitQuantities();
|
|
prepareTimeStep();
|
|
last_report_ = solveWellEq(dt);
|
|
initial_step_ = false;
|
|
}
|
|
// TODO: should we update the explicit related here again, or even prepareTimeStep().
|
|
// basically, this is a more updated state from the solveWellEq based on fixed
|
|
// reservoir state, will tihs be a better place to inialize the explict information?
|
|
}
|
|
assembleWellEq(dt);
|
|
|
|
last_report_.converged = true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
assembleWellEq(const double dt)
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->assembleWellEq(ebosSimulator_, dt, well_state_);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
apply( BVector& r) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->apply(r);
|
|
}
|
|
}
|
|
|
|
|
|
// Ax = A x - C D^-1 B x
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
// TODO: do we still need localWellsActive()?
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
well->apply(x, Ax);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Ax = Ax - alpha * C D^-1 B x
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
if( scaleAddRes_.size() != Ax.size() ) {
|
|
scaleAddRes_.resize( Ax.size() );
|
|
}
|
|
|
|
scaleAddRes_ = 0.0;
|
|
// scaleAddRes_ = - C D^-1 B x
|
|
apply( x, scaleAddRes_ );
|
|
// Ax = Ax + alpha * scaleAddRes_
|
|
Ax.axpy( alpha, scaleAddRes_ );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
recoverWellSolutionAndUpdateWellState(const BVector& x)
|
|
{
|
|
if (!localWellsActive())
|
|
return;
|
|
|
|
for (auto& well : well_container_) {
|
|
well->recoverWellSolutionAndUpdateWellState(x, well_state_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
resetWellControlFromState() const
|
|
{
|
|
for (auto& well : well_container_) {
|
|
WellControls* wc = well->wellControls();
|
|
well_controls_set_current( wc, well_state_.currentControls()[well->indexOfWell()]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
wellsActive() const
|
|
{
|
|
return wells_active_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setWellsActive(const bool wells_active)
|
|
{
|
|
wells_active_ = wells_active;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
localWellsActive() const
|
|
{
|
|
return numWells() > 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
initPrimaryVariablesEvaluation() const
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->initPrimaryVariablesEvaluation();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
SimulatorReport
|
|
BlackoilWellModel<TypeTag>::
|
|
solveWellEq(const double dt)
|
|
{
|
|
const int nw = numWells();
|
|
WellState well_state0 = well_state_;
|
|
|
|
const int numComp = numComponents();
|
|
std::vector< Scalar > B_avg( numComp, Scalar() );
|
|
computeAverageFormationFactor(B_avg);
|
|
|
|
const int max_iter = param_.max_welleq_iter_;
|
|
|
|
int it = 0;
|
|
bool converged;
|
|
do {
|
|
assembleWellEq(dt);
|
|
|
|
converged = getWellConvergence(B_avg);
|
|
|
|
// checking whether the group targets are converged
|
|
if (wellCollection().groupControlActive()) {
|
|
converged = converged && wellCollection().groupTargetConverged(well_state_.wellRates());
|
|
}
|
|
|
|
if (converged) {
|
|
break;
|
|
}
|
|
|
|
++it;
|
|
if( localWellsActive() )
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->solveEqAndUpdateWellState(well_state_);
|
|
}
|
|
}
|
|
// updateWellControls uses communication
|
|
// Therefore the following is executed if there
|
|
// are active wells anywhere in the global domain.
|
|
if( wellsActive() )
|
|
{
|
|
updateWellControls();
|
|
initPrimaryVariablesEvaluation();
|
|
}
|
|
} while (it < max_iter);
|
|
|
|
if (converged) {
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations");
|
|
}
|
|
} else {
|
|
if ( terminal_output_ ) {
|
|
OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations");
|
|
}
|
|
|
|
well_state_ = well_state0;
|
|
updatePrimaryVariables();
|
|
// also recover the old well controls
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = well_container_[w]->wellControls();
|
|
well_controls_set_current(wc, well_state_.currentControls()[w]);
|
|
}
|
|
}
|
|
|
|
SimulatorReport report;
|
|
report.converged = converged;
|
|
report.total_well_iterations = it;
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
BlackoilWellModel<TypeTag>::
|
|
getWellConvergence(const std::vector<Scalar>& B_avg) const
|
|
{
|
|
ConvergenceReport report;
|
|
|
|
for (const auto& well : well_container_) {
|
|
report += well->getWellConvergence(B_avg);
|
|
}
|
|
ConvergenceReport::Severity severity = report.severityOfWorstFailure();
|
|
|
|
// checking NaN residuals
|
|
{
|
|
// Debug reporting.
|
|
for (const auto& f : report.wellFailures()) {
|
|
if (f.severity() == ConvergenceReport::Severity::NotANumber) {
|
|
OpmLog::debug("NaN residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
|
|
}
|
|
}
|
|
|
|
// Throw if any nan residual found.
|
|
bool nan_residual_found = (severity == ConvergenceReport::Severity::NotANumber);
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
int value = nan_residual_found ? 1 : 0;
|
|
nan_residual_found = grid.comm().max(value);
|
|
if (nan_residual_found) {
|
|
OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
|
|
}
|
|
}
|
|
|
|
// checking too large residuals
|
|
{
|
|
// Debug reporting.
|
|
for (const auto& f : report.wellFailures()) {
|
|
if (f.severity() == ConvergenceReport::Severity::TooLarge) {
|
|
OpmLog::debug("Too large residual found with phase " + std::to_string(f.phase()) + " for well " + f.wellName());
|
|
}
|
|
}
|
|
|
|
// Throw if any too large residual found.
|
|
bool too_large_residual_found = (severity == ConvergenceReport::Severity::TooLarge);
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
int value = too_large_residual_found ? 1 : 0;
|
|
too_large_residual_found = grid.comm().max(value);
|
|
if (too_large_residual_found) {
|
|
OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
|
|
}
|
|
}
|
|
|
|
// checking convergence
|
|
bool converged_well = report.converged();
|
|
{
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
int value = converged_well ? 1 : 0;
|
|
|
|
converged_well = grid.comm().min(value);
|
|
}
|
|
|
|
return converged_well;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateExplicitQuantities() const
|
|
{
|
|
for (auto& well : well_container_) {
|
|
well->calculateExplicitQuantities(ebosSimulator_, well_state_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateWellControls()
|
|
{
|
|
// Even if there no wells active locally, we cannot
|
|
// return as the Destructor of the WellSwitchingLogger
|
|
// uses global communication. For no well active globally
|
|
// we simply return.
|
|
if( !wellsActive() ) return ;
|
|
|
|
#if HAVE_OPENMP
|
|
#endif // HAVE_OPENMP
|
|
wellhelpers::WellSwitchingLogger logger;
|
|
|
|
for (const auto& well : well_container_) {
|
|
well->updateWellControl(well_state_, logger);
|
|
}
|
|
|
|
updateGroupControls();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->updateWellTestState(well_state_, simulationTime, /*writeMessageToOPMLog=*/ true, wellTestState);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeWellPotentials(std::vector<double>& well_potentials)
|
|
{
|
|
// number of wells and phases
|
|
const int nw = numWells();
|
|
const int np = numPhases();
|
|
well_potentials.resize(nw * np, 0.0);
|
|
|
|
for (const auto& well : well_container_) {
|
|
std::vector<double> potentials;
|
|
well->computeWellPotentials(ebosSimulator_, well_state_, potentials);
|
|
|
|
// putting the sucessfully calculated potentials to the well_potentials
|
|
for (int p = 0; p < np; ++p) {
|
|
well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]);
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
prepareTimeStep()
|
|
{
|
|
|
|
if ( wellCollection().havingVREPGroups() ) {
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
}
|
|
|
|
// after restarting, the well_controls can be modified while
|
|
// the well_state still uses the old control index
|
|
// we need to synchronize these two.
|
|
// keep in mind that we set the control index of well_state to be the same with
|
|
// with the wellControls from the deck when we create well_state at the beginning of the report step
|
|
resetWellControlFromState();
|
|
|
|
// process group control related
|
|
prepareGroupControl();
|
|
|
|
// since the controls are all updated, we should update well_state accordingly
|
|
for (const auto& well : well_container_) {
|
|
const int w = well->indexOfWell();
|
|
WellControls* wc = well->wellControls();
|
|
const int control = well_controls_get_current(wc);
|
|
well_state_.currentControls()[w] = control;
|
|
// TODO: for VFP control, the perf_densities are still zero here, investigate better
|
|
// way to handle it later.
|
|
well->updateWellStateWithTarget(well_state_);
|
|
|
|
// The wells are not considered to be newly added
|
|
// for next time step
|
|
if (well_state_.isNewWell(w) ) {
|
|
well_state_.setNewWell(w, false);
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
prepareGroupControl()
|
|
{
|
|
// group control related processing
|
|
if (wellCollection().groupControlActive()) {
|
|
for (const auto& well : well_container_) {
|
|
WellControls* wc = well->wellControls();
|
|
WellNode& well_node = wellCollection().findWellNode(well->name());
|
|
|
|
// handling the situation that wells do not have a valid control
|
|
// it happens the well specified with GRUP and restarting due to non-convergencing
|
|
// putting the well under group control for this situation
|
|
int ctrl_index = well_controls_get_current(wc);
|
|
|
|
const int group_control_index = well_node.groupControlIndex();
|
|
if (group_control_index >= 0 && ctrl_index < 0) {
|
|
// put well under group control
|
|
well_controls_set_current(wc, group_control_index);
|
|
well_state_.currentControls()[well->indexOfWell()] = group_control_index;
|
|
}
|
|
|
|
// Final step, update whehter the well is under group control or individual control
|
|
// updated ctrl_index from the well control
|
|
ctrl_index = well_controls_get_current(wc);
|
|
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
}
|
|
|
|
if (wellCollection().requireWellPotentials()) {
|
|
|
|
// calculate the well potentials
|
|
std::vector<double> well_potentials;
|
|
computeWellPotentials(well_potentials);
|
|
|
|
// update/setup guide rates for each well based on the well_potentials
|
|
// TODO: this is one of two places that still need Wells struct. In this function, only the well names
|
|
// well types are used, probably the order of the wells to locate the correct values in well_potentials.
|
|
wellCollection().setGuideRatesWithPotentials(wells(), phase_usage_, well_potentials);
|
|
}
|
|
|
|
applyVREPGroupControl();
|
|
|
|
if (!wellCollection().groupControlApplied()) {
|
|
wellCollection().applyGroupControls();
|
|
} else {
|
|
wellCollection().updateWellTargets(well_state_.wellRates());
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
const WellCollection&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellCollection() const
|
|
{
|
|
return wells_manager_->wellCollection();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
WellCollection&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellCollection()
|
|
{
|
|
return wells_manager_->wellCollection();
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
const typename BlackoilWellModel<TypeTag>::WellState&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellState() const { return well_state_; }
|
|
|
|
template<typename TypeTag>
|
|
const typename BlackoilWellModel<TypeTag>::WellState&
|
|
BlackoilWellModel<TypeTag>::
|
|
wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); }
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
calculateEfficiencyFactors()
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
for (auto& well : well_container_) {
|
|
const std::string& well_name = well->name();
|
|
const WellNode& well_node = wellCollection().findWellNode(well_name);
|
|
|
|
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
|
|
|
|
well->setWellEfficiencyFactor(well_efficiency_factor);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeWellVoidageRates(std::vector<double>& well_voidage_rates,
|
|
std::vector<double>& voidage_conversion_coeffs) const
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
// TODO: for now, we store the voidage rates for all the production wells.
|
|
// For injection wells, the rates are stored as zero.
|
|
// We only store the conversion coefficients for all the injection wells.
|
|
// Later, more delicate model will be implemented here.
|
|
// And for the moment, group control can only work for serial running.
|
|
const int nw = numWells();
|
|
|
|
const int np = numPhases();
|
|
|
|
// we calculate the voidage rate for each well, that means the sum of all the phases.
|
|
well_voidage_rates.resize(nw, 0);
|
|
// store the conversion coefficients, while only for the use of injection wells.
|
|
voidage_conversion_coeffs.resize(nw * np, 1.0);
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
std::vector<double> convert_coeff(np, 1.0);
|
|
|
|
for (auto& well : well_container_) {
|
|
const bool is_producer = well->wellType() == PRODUCER;
|
|
const int well_cell_top =well->cells()[0];
|
|
const int w = well->indexOfWell();
|
|
const int pvtRegionIdx = pvt_region_idx_[well_cell_top];
|
|
|
|
// not sure necessary to change all the value to be positive
|
|
if (is_producer) {
|
|
std::transform(well_state_.wellRates().begin() + np * w,
|
|
well_state_.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin(), std::negate<double>());
|
|
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
|
|
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
|
|
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
|
|
convert_coeff.begin(), 0.0);
|
|
} else {
|
|
// TODO: Not sure whether will encounter situation with all zero rates
|
|
// and whether it will cause problem here.
|
|
std::copy(well_state_.wellRates().begin() + np * w,
|
|
well_state_.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin());
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
|
|
std::copy(convert_coeff.begin(), convert_coeff.end(),
|
|
voidage_conversion_coeffs.begin() + np * w);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
applyVREPGroupControl()
|
|
{
|
|
if ( wellCollection().havingVREPGroups() ) {
|
|
std::vector<double> well_voidage_rates;
|
|
std::vector<double> voidage_conversion_coeffs;
|
|
computeWellVoidageRates(well_voidage_rates, voidage_conversion_coeffs);
|
|
wellCollection().applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
|
|
|
|
// for the wells under group control, update the control index for the well_state_ and well_controls
|
|
for (const WellNode* well_node : wellCollection().getLeafNodes()) {
|
|
if (well_node->isInjector() && !well_node->individualControl()) {
|
|
const int well_index = well_node->selfIndex();
|
|
well_state_.currentControls()[well_index] = well_node->groupControlIndex();
|
|
|
|
WellControls* wc = well_container_[well_index]->wellControls();
|
|
well_controls_set_current(wc, well_node->groupControlIndex());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updateGroupControls()
|
|
{
|
|
|
|
if (wellCollection().groupControlActive()) {
|
|
for (auto& well : well_container_) {
|
|
// update whether well is under group control
|
|
// get well node in the well collection
|
|
WellNode& well_node = wellCollection().findWellNode(well->name());
|
|
|
|
// update whehter the well is under group control or individual control
|
|
const int current = well_state_.currentControls()[well->indexOfWell()];
|
|
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
}
|
|
|
|
applyVREPGroupControl();
|
|
// upate the well targets following group controls
|
|
// it will not change the control mode, only update the targets
|
|
wellCollection().updateWellTargets(well_state_.wellRates());
|
|
|
|
for (auto& well : well_container_) {
|
|
well->updateWellStateWithTarget(well_state_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
setupCartesianToCompressed_(const int* global_cell, int number_of_cartesian_cells)
|
|
{
|
|
cartesian_to_compressed_.resize(number_of_cartesian_cells, -1);
|
|
if (global_cell) {
|
|
for (unsigned i = 0; i < number_of_cells_; ++i) {
|
|
cartesian_to_compressed_[global_cell[i]] = i;
|
|
}
|
|
}
|
|
else {
|
|
for (unsigned i = 0; i < number_of_cells_; ++i) {
|
|
cartesian_to_compressed_[i] = i;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeRepRadiusPerfLength(const Grid& grid)
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->computeRepRadiusPerfLength(grid, cartesian_to_compressed_);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeAverageFormationFactor(std::vector<double>& B_avg) const
|
|
{
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& gridView = grid.leafGridView();
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt; ++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
|
|
{
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
auto& B = B_avg[ compIdx ];
|
|
|
|
B += 1 / fs.invB(phaseIdx).value();
|
|
}
|
|
if (has_solvent_) {
|
|
auto& B = B_avg[solventSaturationIdx];
|
|
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
}
|
|
}
|
|
|
|
// compute global average
|
|
grid.comm().sum(B_avg.data(), B_avg.size());
|
|
for(auto& bval: B_avg)
|
|
{
|
|
bval/=global_nc_;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updatePrimaryVariables()
|
|
{
|
|
for (const auto& well : well_container_) {
|
|
well->updatePrimaryVariables(well_state_);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
|
|
{
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const auto& eclProblem = ebosSimulator_.problem();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
pvt_region_idx_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
pvt_region_idx_[cellIdx] =
|
|
eclProblem.pvtRegionIndex(cellIdx);
|
|
}
|
|
}
|
|
|
|
// The number of components in the model.
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>::numComponents() const
|
|
{
|
|
if (numPhases() == 2) {
|
|
return 2;
|
|
}
|
|
int numComp = FluidSystem::numComponents;
|
|
if (has_solvent_) {
|
|
numComp ++;
|
|
}
|
|
|
|
return numComp;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>:: numWells() const
|
|
{
|
|
return wells() ? wells()->number_of_wells : 0;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
BlackoilWellModel<TypeTag>:: numPhases() const
|
|
{
|
|
return wells() ? wells()->number_of_phases : 1;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
|
|
{
|
|
const auto& grid = ebosSimulator_.vanguard().grid();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
depth_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
depth_[cellIdx] =
|
|
grid.cellCenterDepth(cellIdx);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
updatePerforationIntensiveQuantities() {
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
BlackoilWellModel<TypeTag>::
|
|
computeRESV(const std::size_t step)
|
|
{
|
|
typedef SimFIBODetails::WellMap WellMap;
|
|
|
|
const WellMap& wmap = SimFIBODetails::mapWells(wells_ecl_);
|
|
|
|
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells(), step, wmap);
|
|
|
|
int global_number_resv_wells = resv_wells.size();
|
|
global_number_resv_wells = ebosSimulator_.gridView().comm().sum(global_number_resv_wells);
|
|
if ( global_number_resv_wells > 0 )
|
|
{
|
|
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
|
|
}
|
|
|
|
if (! resv_wells.empty()) {
|
|
const PhaseUsage& pu = phase_usage_;
|
|
const std::vector<double>::size_type np = pu.num_phases;
|
|
|
|
std::vector<double> distr (np);
|
|
std::vector<double> hrates(np);
|
|
|
|
for (std::vector<int>::const_iterator
|
|
rp = resv_wells.begin(), e = resv_wells.end();
|
|
rp != e; ++rp)
|
|
{
|
|
WellControls* ctrl = wells()->ctrls[*rp];
|
|
const bool is_producer = wells()->type[*rp] == PRODUCER;
|
|
const int well_cell_top = wells()->well_cells[wells()->well_connpos[*rp]];
|
|
const int pvtreg = pvt_region_idx_[well_cell_top];
|
|
|
|
// RESV control mode, all wells
|
|
{
|
|
const int rctrl = SimFIBODetails::resv_control(ctrl);
|
|
|
|
if (0 <= rctrl) {
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
|
|
|
|
if (!is_producer) { // injectors
|
|
well_controls_assert_number_of_phases(ctrl, np);
|
|
|
|
// original distr contains 0 and 1 to indicate phases under control
|
|
const double* old_distr = well_controls_get_current_distr(ctrl);
|
|
|
|
for (size_t p = 0; p < np; ++p) {
|
|
distr[p] *= old_distr[p];
|
|
}
|
|
}
|
|
|
|
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
|
|
}
|
|
}
|
|
|
|
// RESV control, WCONHIST wells. A bit of duplicate
|
|
// work, regrettably.
|
|
if (is_producer && wells()->name[*rp] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells()->name[*rp]);
|
|
|
|
if (i != wmap.end()) {
|
|
const auto* wp = i->second;
|
|
|
|
const WellProductionProperties& p =
|
|
wp->getProductionProperties(step);
|
|
|
|
if (! p.predictionMode) {
|
|
// History matching (WCONHIST/RESV)
|
|
SimFIBODetails::historyRates(pu, p, hrates);
|
|
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
|
|
|
|
// WCONHIST/RESV target is sum of all
|
|
// observed phase rates translated to
|
|
// reservoir conditions. Recall sign
|
|
// convention: Negative for producers.
|
|
std::vector<double> hrates_resv(np);
|
|
rateConverter_->calcReservoirVoidageRates(fipreg, pvtreg, hrates, hrates_resv);
|
|
const double target = -std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
|
|
|
|
well_controls_clear(ctrl);
|
|
well_controls_assert_number_of_phases(ctrl, int(np));
|
|
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
|
|
const int ok_resv =
|
|
well_controls_add_new(RESERVOIR_RATE, target,
|
|
invalid_alq, invalid_vfp,
|
|
& distr[0], ctrl);
|
|
|
|
// For WCONHIST the BHP limit is set to 1 atm.
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
|
|
if (ok_resv != 0 && ok_bhp != 0) {
|
|
well_state_.currentControls()[*rp] = 0;
|
|
well_controls_set_current(ctrl, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( wells() )
|
|
{
|
|
for (int w = 0, nw = numWells(); w < nw; ++w) {
|
|
WellControls* ctrl = wells()->ctrls[w];
|
|
const bool is_producer = wells()->type[w] == PRODUCER;
|
|
if (!is_producer && wells()->name[w] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells()->name[w]);
|
|
if (i != wmap.end()) {
|
|
const auto* wp = i->second;
|
|
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
|
|
if (!injector.predictionMode) {
|
|
//History matching WCONINJEH
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
// For WCONINJEH the BHP limit is set to a large number
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
if (!ok_bhp) {
|
|
OPM_THROW(std::runtime_error, "Failed to add well control.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace Opm
|