opm-simulators/tests/models/problems/powerinjectionproblem.hh
Andreas Lauser 7cf471162e some renames to draw the eWoms directory structure nearer to the the one of the remaining OPM modules
this renames the 'test' directory to 'tests' and 'test/implicit' to
'tests/models'. the latter change reflects the fact that in eWoms all
models are implicit since the IMPET models have been removed.
2013-09-23 18:56:30 +02:00

377 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2012 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \copydoc Ewoms::PowerInjectionProblem
*/
#ifndef EWOMS_POWER_INJECTION_PROBLEM_HH
#define EWOMS_POWER_INJECTION_PROBLEM_HH
#include <opm/material/fluidmatrixinteractions/2p/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/2p/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/2p/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/mp/2pAdapter.hpp>
#include <opm/material/fluidsystems/2pImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Air.hpp>
#include <ewoms/models/immiscible/immisciblemodel.hh>
#include <ewoms/io/cubegridcreator.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
#include <type_traits>
#include <iostream>
namespace Ewoms {
template <class TypeTag>
class PowerInjectionProblem;
//////////
// Specify the properties for the powerInjection problem
//////////
namespace Properties {
NEW_TYPE_TAG(PowerInjectionBaseProblem);
// Set the grid implementation to be used
SET_TYPE_PROP(PowerInjectionBaseProblem, Grid, Dune::YaspGrid</*dim=*/1>);
// set the GridCreator property
SET_TYPE_PROP(PowerInjectionBaseProblem, GridCreator, CubeGridCreator<TypeTag>);
// Set the problem property
SET_TYPE_PROP(PowerInjectionBaseProblem, Problem, Ewoms::PowerInjectionProblem<TypeTag>);
// Set the wetting phase
SET_PROP(PowerInjectionBaseProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(PowerInjectionBaseProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::Air<Scalar> > type;
};
// Set the material Law
SET_PROP(PowerInjectionBaseProblem, MaterialLaw)
{
private:
// define the material law which is parameterized by effective
// saturations
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::RegularizedVanGenuchten<Scalar> EffectiveLaw;
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> TwoPMaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
public:
typedef Opm::TwoPAdapter<wPhaseIdx, TwoPMaterialLaw> type;
};
// Write out the filter velocities for this problem
SET_BOOL_PROP(PowerInjectionBaseProblem, VtkWriteFilterVelocities, true);
// Disable gravity
SET_BOOL_PROP(PowerInjectionBaseProblem, EnableGravity, false);
// define the properties specific for the power injection problem
SET_SCALAR_PROP(PowerInjectionBaseProblem, DomainSizeX, 100.0);
SET_SCALAR_PROP(PowerInjectionBaseProblem, DomainSizeY, 1.0);
SET_SCALAR_PROP(PowerInjectionBaseProblem, DomainSizeZ, 1.0);
SET_INT_PROP(PowerInjectionBaseProblem, CellsX, 250);
SET_INT_PROP(PowerInjectionBaseProblem, CellsY, 1);
SET_INT_PROP(PowerInjectionBaseProblem, CellsZ, 1);
// The default for the end time of the simulation
SET_SCALAR_PROP(PowerInjectionBaseProblem, EndTime, 100);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(PowerInjectionBaseProblem, InitialTimeStepSize, 1e-3);
}
/*!
* \ingroup VcfvTestProblems
* \brief 1D Problem with very fast injection of gas on the left.
*
* The velocity model is chosen in the .cc file in this problem. The
* spatial parameters are inspired by the ones given by
*
* V. Jambhekar: "Forchheimer Porous-media Flow models -- Numerical
* Investigation and Comparison with Experimental Data", Master's
* Thesis at Institute for Modelling Hydraulic and Environmental
* Systems, University of Stuttgart, 2011
*/
template <class TypeTag>
class PowerInjectionProblem
: public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
enum {
// number of phases
// phase indices
wPhaseIdx = FluidSystem::wPhaseIdx,
nPhaseIdx = FluidSystem::nPhaseIdx,
// equation indices
contiNEqIdx = Indices::conti0EqIdx + nPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
PowerInjectionProblem(TimeManager &timeManager)
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
{
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 26.6;
// parameters for the Van Genuchten law
// alpha and n
materialParams_.setVgAlpha(0.00045);
materialParams_.setVgN(7.3);
K_ = this->toDimMatrix_(5.73e-08); // [m^2]
setupInitialFluidState_();
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc VcfvProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "powerinjection_";
if (std::is_same<typename GET_PROP_TYPE(TypeTag, VelocityModule),
Ewoms::VcfvDarcyVelocityModule<TypeTag> >::value)
oss << "darcy";
else
oss << "forchheimer";
return oss.str();
}
/*!
* \copydoc VcfvProblem::postTimeStep
*/
void postTimeStep()
{
// Calculate storage terms
PrimaryVariables storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout<<"Storage: " << storage << std::endl;
}
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc VcfvMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
{ return K_; }
/*!
* \copydoc VcfvForchheimerBaseProblem::ergunCoefficient
*/
template <class Context>
Scalar ergunCoefficient(const Context &context, int spaceIdx, int timeIdx) const
{ return 0.3866; }
/*!
* \copydoc VcfvMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{ return 0.558; }
/*!
* \copydoc VcfvMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context &context, int spaceIdx, int timeIdx) const
{ return materialParams_; }
/*!
* \copydoc VcfvMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context,
int spaceIdx, int timeIdx) const
{ return temperature_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc VcfvProblem::boundary
*
* This problem sets a very high injection rate of nitrogen on the
* left and a free-flow boundary on the right.
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos)) {
RateVector massRate(0.0);
massRate = 0.0;
massRate[contiNEqIdx] = -1.00; // kg / (m^2 * s)
// impose a forced flow boundary
values.setMassRate(massRate);
}
else {
// free flow boundary with initial condition on the right
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
}
}
//! \}
/*!
* \name Volume terms
*/
//! \{
/*!
* \copydoc VcfvProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values,
const Context &context,
int spaceIdx, int timeIdx) const
{
// assign the primary variables
values.assignNaive(initialFluidState_);
}
/*!
* \copydoc VcfvProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate,
const Context &context,
int spaceIdx, int timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->bboxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->bboxMax()[0] - eps_; }
void setupInitialFluidState_()
{
initialFluidState_.setTemperature(temperature_);
Scalar Sw = 1.0;
initialFluidState_.setSaturation(wPhaseIdx, Sw);
initialFluidState_.setSaturation(nPhaseIdx, 1 - Sw);
Scalar p = 1e5;
initialFluidState_.setPressure(wPhaseIdx, p);
initialFluidState_.setPressure(nPhaseIdx, p);
}
DimMatrix K_;
MaterialLawParams materialParams_;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;
Scalar temperature_;
Scalar eps_;
};
} //end namespace
#endif