mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 15:41:56 -06:00
282 lines
11 KiB
C++
282 lines
11 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::BlackOilBoundaryRateVector
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_BOUNDARY_RATE_VECTOR_HH
|
|
#define EWOMS_BLACK_OIL_BOUNDARY_RATE_VECTOR_HH
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
|
|
|
#include "blackoilintensivequantities.hh"
|
|
#include "blackoilenergymodules.hh"
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup BlackOilModel
|
|
*
|
|
* \brief Implements a boundary vector for the fully implicit black-oil model.
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilBoundaryRateVector : public GetPropType<TypeTag, Properties::RateVector>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::RateVector>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
|
|
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { contiEnergyEqIdx = Indices::contiEnergyEqIdx };
|
|
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
|
|
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
|
|
|
|
static constexpr bool blackoilConserveSurfaceVolume = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>();
|
|
|
|
using EnergyModule = BlackOilEnergyModule<TypeTag, enableEnergy>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Default constructor
|
|
*/
|
|
BlackOilBoundaryRateVector() : ParentType()
|
|
{}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar)
|
|
*/
|
|
BlackOilBoundaryRateVector(Scalar value) : ParentType(value)
|
|
{}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const ImmiscibleBoundaryRateVector& )
|
|
*/
|
|
BlackOilBoundaryRateVector(const BlackOilBoundaryRateVector& value) = default;
|
|
BlackOilBoundaryRateVector& operator=(const BlackOilBoundaryRateVector& value) = default;
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleBoundaryRateVector::setFreeFlow
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setFreeFlow(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& fluidState)
|
|
{
|
|
ExtensiveQuantities extQuants;
|
|
extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
|
|
const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
|
|
unsigned focusDofIdx = context.focusDofIndex();
|
|
unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);
|
|
|
|
////////
|
|
// advective fluxes of all components in all phases
|
|
////////
|
|
(*this) = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
const auto& pBoundary = fluidState.pressure(phaseIdx);
|
|
const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
|
|
|
|
RateVector tmp;
|
|
|
|
// mass conservation
|
|
if (pBoundary < pInside)
|
|
// outflux
|
|
LocalResidual::template evalPhaseFluxes_<Evaluation>(tmp,
|
|
phaseIdx,
|
|
insideIntQuants.pvtRegionIndex(),
|
|
extQuants,
|
|
insideIntQuants.fluidState());
|
|
else if (pBoundary > pInside) {
|
|
using RhsEval = typename std::conditional<std::is_same<typename FluidState::Scalar, Evaluation>::value,
|
|
Evaluation, Scalar>::type;
|
|
// influx
|
|
LocalResidual::template evalPhaseFluxes_<RhsEval>(tmp,
|
|
phaseIdx,
|
|
insideIntQuants.pvtRegionIndex(),
|
|
extQuants,
|
|
fluidState);
|
|
}
|
|
|
|
for (unsigned i = 0; i < tmp.size(); ++i)
|
|
(*this)[i] += tmp[i];
|
|
|
|
// energy conservation
|
|
if (enableEnergy) {
|
|
Evaluation density;
|
|
Evaluation specificEnthalpy;
|
|
if (pBoundary > pInside) {
|
|
if (focusDofIdx == interiorDofIdx) {
|
|
density = fluidState.density(phaseIdx);
|
|
specificEnthalpy = fluidState.enthalpy(phaseIdx);
|
|
}
|
|
else {
|
|
density = getValue(fluidState.density(phaseIdx));
|
|
specificEnthalpy = getValue(fluidState.enthalpy(phaseIdx));
|
|
}
|
|
}
|
|
else if (focusDofIdx == interiorDofIdx) {
|
|
density = insideIntQuants.fluidState().density(phaseIdx);
|
|
specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
|
|
}
|
|
else {
|
|
density = getValue(insideIntQuants.fluidState().density(phaseIdx));
|
|
specificEnthalpy = getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));
|
|
}
|
|
|
|
Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
|
|
EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
|
|
}
|
|
}
|
|
|
|
if (enableSolvent) {
|
|
(*this)[Indices::contiSolventEqIdx] = extQuants.solventVolumeFlux();
|
|
if (blackoilConserveSurfaceVolume)
|
|
(*this)[Indices::contiSolventEqIdx] *= insideIntQuants.solventInverseFormationVolumeFactor();
|
|
else
|
|
(*this)[Indices::contiSolventEqIdx] *= insideIntQuants.solventDensity();
|
|
|
|
}
|
|
|
|
if (enablePolymer) {
|
|
(*this)[Indices::contiPolymerEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.polymerConcentration();
|
|
}
|
|
|
|
if (enableMICP) {
|
|
(*this)[Indices::contiMicrobialEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.microbialConcentration();
|
|
(*this)[Indices::contiOxygenEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.oxygenConcentration();
|
|
(*this)[Indices::contiUreaEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.ureaConcentration();
|
|
}
|
|
|
|
// make sure that the right mass conservation quantities are used
|
|
LocalResidual::adaptMassConservationQuantities_(*this, insideIntQuants.pvtRegionIndex());
|
|
|
|
// heat conduction
|
|
if (enableEnergy)
|
|
EnergyModule::addToEnthalpyRate(*this, extQuants.energyFlux());
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0; i < numEq; ++i) {
|
|
Valgrind::CheckDefined((*this)[i]);
|
|
}
|
|
Valgrind::CheckDefined(*this);
|
|
#endif
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleBoundaryRateVector::setInFlow
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setInFlow(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& fluidState)
|
|
{
|
|
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
|
|
|
|
// we only allow fluxes in the direction opposite to the outer
|
|
// unit normal
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
|
Scalar& val = this->operator[](eqIdx);
|
|
val = std::min<Scalar>(0.0, val);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleBoundaryRateVector::setOutFlow
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setOutFlow(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& fluidState)
|
|
{
|
|
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
|
|
|
|
// we only allow fluxes in the same direction as the outer
|
|
// unit normal
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
|
Scalar& val = this->operator[](eqIdx);
|
|
val = std::max( Scalar(0), val);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleBoundaryRateVector::setNoFlow
|
|
*/
|
|
void setNoFlow()
|
|
{ (*this) = Scalar(0); }
|
|
|
|
/*!
|
|
* \copydoc Specify an energy flux that corresponds to the thermal conduction from
|
|
* the domain boundary
|
|
*
|
|
* This means that a "thermal flow" boundary is a no-flow condition for mass and thermal
|
|
* conduction for energy.
|
|
*/
|
|
template <class Context, class FluidState>
|
|
void setThermalFlow(const Context& context,
|
|
unsigned bfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& boundaryFluidState)
|
|
{
|
|
// set the mass no-flow condition
|
|
setNoFlow();
|
|
|
|
if (!enableEnergy)
|
|
// if we do not conserve energy there is nothing we should do in addition
|
|
return;
|
|
|
|
ExtensiveQuantities extQuants;
|
|
extQuants.updateBoundary(context, bfIdx, timeIdx, boundaryFluidState);
|
|
|
|
(*this)[contiEnergyEqIdx] += extQuants.energyFlux();
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0; i < numEq; ++i)
|
|
Valgrind::CheckDefined((*this)[i]);
|
|
Valgrind::CheckDefined(*this);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|