opm-simulators/opm/models/blackoil/blackoilsolventmodules.hh
Arne Morten Kvarving e4d6acc23b changed: get rid of OPM_UNUSED macro usage
prefer anonymous parameters and c++17 [[maybe_unused]]
2021-08-03 10:10:01 +02:00

1570 lines
66 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model by solvents.
*/
#ifndef EWOMS_BLACK_OIL_SOLVENT_MODULE_HH
#define EWOMS_BLACK_OIL_SOLVENT_MODULE_HH
#include "blackoilproperties.hh"
#include <opm/models/io/vtkblackoilsolventmodule.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/fluidsystems/blackoilpvt/SolventPvt.hpp>
#include <opm/material/common/Tabulated1DFunction.hpp>
#if HAVE_ECL_INPUT
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/SsfnTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/Sof2Table.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/MsfnTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/PmiscTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/MiscTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/SorwmisTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/SgcwmisTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TlpmixpaTable.hpp>
#endif
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <string>
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model by solvents.
*/
template <class TypeTag, bool enableSolventV = getPropValue<TypeTag, Properties::EnableSolvent>()>
class BlackOilSolventModule
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Toolbox = MathToolbox<Evaluation>;
using SolventPvt = ::Opm::SolventPvt<Scalar>;
using TabulatedFunction = Tabulated1DFunction<Scalar>;
static constexpr unsigned solventSaturationIdx = Indices::solventSaturationIdx;
static constexpr unsigned contiSolventEqIdx = Indices::contiSolventEqIdx;
static constexpr unsigned enableSolvent = enableSolventV;
static constexpr unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
static constexpr unsigned numPhases = FluidSystem::numPhases;
static constexpr bool blackoilConserveSurfaceVolume = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>();
public:
#if HAVE_ECL_INPUT
/*!
* \brief Initialize all internal data structures needed by the solvent module
*/
static void initFromState(const EclipseState& eclState, const Schedule& schedule)
{
// some sanity checks: if solvents are enabled, the SOLVENT keyword must be
// present, if solvents are disabled the keyword must not be present.
if (enableSolvent && !eclState.runspec().phases().active(Phase::SOLVENT))
throw std::runtime_error("Non-trivial solvent treatment requested at compile "
"time, but the deck does not contain the SOLVENT keyword");
else if (!enableSolvent && eclState.runspec().phases().active(Phase::SOLVENT))
throw std::runtime_error("Solvent treatment disabled at compile time, but the deck "
"contains the SOLVENT keyword");
if (!eclState.runspec().phases().active(Phase::SOLVENT))
return; // solvent treatment is supposed to be disabled
solventPvt_.initFromState(eclState, schedule);
const auto& tableManager = eclState.getTableManager();
// initialize the objects which deal with the SSFN keyword
const auto& ssfnTables = tableManager.getSsfnTables();
unsigned numSatRegions = tableManager.getTabdims().getNumSatTables();
setNumSatRegions(numSatRegions);
for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) {
const auto& ssfnTable = ssfnTables.template getTable<SsfnTable>(satRegionIdx);
ssfnKrg_[satRegionIdx].setXYContainers(ssfnTable.getSolventFractionColumn(),
ssfnTable.getGasRelPermMultiplierColumn(),
/*sortInput=*/true);
ssfnKrs_[satRegionIdx].setXYContainers(ssfnTable.getSolventFractionColumn(),
ssfnTable.getSolventRelPermMultiplierColumn(),
/*sortInput=*/true);
}
// initialize the objects needed for miscible solvent and oil simulations
isMiscible_ = false;
if (!eclState.getTableManager().getMiscTables().empty()) {
isMiscible_ = true;
unsigned numMiscRegions = 1;
// misicible hydrocabon relative permeability wrt water
const auto& sof2Tables = tableManager.getSof2Tables();
if (!sof2Tables.empty()) {
// resize the attributes of the object
sof2Krn_.resize(numSatRegions);
for (unsigned satRegionIdx = 0; satRegionIdx < numSatRegions; ++ satRegionIdx) {
const auto& sof2Table = sof2Tables.template getTable<Sof2Table>(satRegionIdx);
sof2Krn_[satRegionIdx].setXYContainers(sof2Table.getSoColumn(),
sof2Table.getKroColumn(),
/*sortInput=*/true);
}
}
else
throw std::runtime_error("SOF2 must be specified in MISCIBLE (SOLVENT) runs\n");
const auto& miscTables = tableManager.getMiscTables();
if (!miscTables.empty()) {
assert(numMiscRegions == miscTables.size());
// resize the attributes of the object
misc_.resize(numMiscRegions);
for (unsigned miscRegionIdx = 0; miscRegionIdx < numMiscRegions; ++miscRegionIdx) {
const auto& miscTable = miscTables.template getTable<MiscTable>(miscRegionIdx);
// solventFraction = Ss / (Ss + Sg);
const auto& solventFraction = miscTable.getSolventFractionColumn();
const auto& misc = miscTable.getMiscibilityColumn();
misc_[miscRegionIdx].setXYContainers(solventFraction, misc);
}
}
else
throw std::runtime_error("MISC must be specified in MISCIBLE (SOLVENT) runs\n");
// resize the attributes of the object
pmisc_.resize(numMiscRegions);
const auto& pmiscTables = tableManager.getPmiscTables();
if (!pmiscTables.empty()) {
assert(numMiscRegions == pmiscTables.size());
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
const auto& pmiscTable = pmiscTables.template getTable<PmiscTable>(regionIdx);
// Copy data
const auto& po = pmiscTable.getOilPhasePressureColumn();
const auto& pmisc = pmiscTable.getMiscibilityColumn();
pmisc_[regionIdx].setXYContainers(po, pmisc);
}
}
else {
std::vector<double> x = {0.0,1.0e20};
std::vector<double> y = {1.0,1.0};
TabulatedFunction constant = TabulatedFunction(2, x, y);
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
setPmisc(regionIdx, constant);
}
}
// miscible relative permeability multipleiers
msfnKrsg_.resize(numSatRegions);
msfnKro_.resize(numSatRegions);
const auto& msfnTables = tableManager.getMsfnTables();
if (!msfnTables.empty()) {
assert(numSatRegions == msfnTables.size());
for (unsigned regionIdx = 0; regionIdx < numSatRegions; ++regionIdx) {
const MsfnTable& msfnTable = msfnTables.template getTable<MsfnTable>(regionIdx);
// Copy data
// Ssg = Ss + Sg;
const auto& Ssg = msfnTable.getGasPhaseFractionColumn();
const auto& krsg = msfnTable.getGasSolventRelpermMultiplierColumn();
const auto& kro = msfnTable.getOilRelpermMultiplierColumn();
msfnKrsg_[regionIdx].setXYContainers(Ssg, krsg);
msfnKro_[regionIdx].setXYContainers(Ssg, kro);
}
}
else {
std::vector<double> x = {0.0,1.0};
std::vector<double> y = {1.0,0.0};
TabulatedFunction unit = TabulatedFunction(2, x, x);
TabulatedFunction invUnit = TabulatedFunction(2, x, y);
for (unsigned regionIdx = 0; regionIdx < numSatRegions; ++regionIdx) {
setMsfn(regionIdx, unit, invUnit);
}
}
// resize the attributes of the object
sorwmis_.resize(numMiscRegions);
const auto& sorwmisTables = tableManager.getSorwmisTables();
if (!sorwmisTables.empty()) {
assert(numMiscRegions == sorwmisTables.size());
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
const auto& sorwmisTable = sorwmisTables.template getTable<SorwmisTable>(regionIdx);
// Copy data
const auto& sw = sorwmisTable.getWaterSaturationColumn();
const auto& sorwmis = sorwmisTable.getMiscibleResidualOilColumn();
sorwmis_[regionIdx].setXYContainers(sw, sorwmis);
}
}
else {
// default
std::vector<double> x = {0.0,1.0};
std::vector<double> y = {0.0,0.0};
TabulatedFunction zero = TabulatedFunction(2, x, y);
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
setSorwmis(regionIdx, zero);
}
}
// resize the attributes of the object
sgcwmis_.resize(numMiscRegions);
const auto& sgcwmisTables = tableManager.getSgcwmisTables();
if (!sgcwmisTables.empty()) {
assert(numMiscRegions ==sgcwmisTables.size());
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
const auto& sgcwmisTable = sgcwmisTables.template getTable<SgcwmisTable>(regionIdx);
// Copy data
const auto& sw = sgcwmisTable.getWaterSaturationColumn();
const auto& sgcwmis = sgcwmisTable.getMiscibleResidualGasColumn();
sgcwmis_[regionIdx].setXYContainers(sw, sgcwmis);
}
}
else {
// default
std::vector<double> x = {0.0,1.0};
std::vector<double> y = {0.0,0.0};
TabulatedFunction zero = TabulatedFunction(2, x, y);
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx)
setSgcmis(regionIdx, zero);
}
const auto& tlmixpar = eclState.getTableManager().getTLMixpar();
if (!tlmixpar.empty()) {
// resize the attributes of the object
tlMixParamViscosity_.resize(numMiscRegions);
tlMixParamDensity_.resize(numMiscRegions);
assert(numMiscRegions == tlmixpar.size());
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
const auto& tlp = tlmixpar[regionIdx];
tlMixParamViscosity_[regionIdx] = tlp.viscosity_parameter;
tlMixParamDensity_[regionIdx] = tlp.density_parameter;
}
}
else
throw std::runtime_error("TLMIXPAR must be specified in MISCIBLE (SOLVENT) runs\n");
// resize the attributes of the object
tlPMixTable_.resize(numMiscRegions);
if (!eclState.getTableManager().getTlpmixpaTables().empty()) {
const auto& tlpmixparTables = tableManager.getTlpmixpaTables();
if (!tlpmixparTables.empty()) {
assert(numMiscRegions == tlpmixparTables.size());
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx) {
const auto& tlpmixparTable = tlpmixparTables.template getTable<TlpmixpaTable>(regionIdx);
// Copy data
const auto& po = tlpmixparTable.getOilPhasePressureColumn();
const auto& tlpmixpa = tlpmixparTable.getMiscibilityColumn();
tlPMixTable_[regionIdx].setXYContainers(po, tlpmixpa);
}
}
else {
// if empty keyword. Try to use the pmisc table as default.
if (pmisc_.size() > 0)
tlPMixTable_ = pmisc_;
else
throw std::invalid_argument("If the pressure dependent TL values in "
"TLPMIXPA is defaulted (no entries), then "
"the PMISC tables must be specified.");
}
}
else {
// default
std::vector<double> x = {0.0,1.0e20};
std::vector<double> y = {1.0,1.0};
TabulatedFunction ones = TabulatedFunction(2, x, y);
for (unsigned regionIdx = 0; regionIdx < numMiscRegions; ++regionIdx)
setTlpmixpa(regionIdx, ones);
}
}
}
#endif
/*!
* \brief Specify the number of satuation regions.
*
* This must be called before setting the SSFN of any region.
*/
static void setNumSatRegions(unsigned numRegions)
{
ssfnKrg_.resize(numRegions);
ssfnKrs_.resize(numRegions);
}
/*!
* \brief Specify the solvent saturation functions of a single region.
*
* The index of specified here must be in range [0, numSatRegions)
*/
static void setSsfn(unsigned satRegionIdx,
const TabulatedFunction& ssfnKrg,
const TabulatedFunction& ssfnKrs)
{
ssfnKrg_[satRegionIdx] = ssfnKrg;
ssfnKrs_[satRegionIdx] = ssfnKrs;
}
/*!
* \brief Specify misicible hydrocabon relative permeability wrt water of a single region.
*
* The index of specified here must be in range [0, numSatRegions)
*/
static void setSof2(unsigned satRegionIdx,
const TabulatedFunction& sof2Krn)
{
sof2Krn_[satRegionIdx] = sof2Krn;
}
/*!
* \brief Misicibility function wrt solvent fraction of a single region.
*
* The index of specified here must be in range [0, numMiscRegions)
*/
static void setMisc(unsigned miscRegionIdx,
const TabulatedFunction& misc)
{
misc_[miscRegionIdx] = misc;
}
/*!
* \brief Misicibility function wrt pressure of a single region.
*
* The index of specified here must be in range [0, numMiscRegions)
*/
static void setPmisc(unsigned miscRegionIdx,
const TabulatedFunction& pmisc)
{
pmisc_[miscRegionIdx] = pmisc;
}
/*!
* \brief Specify misicible relative permeability multipliers of a single region.
*
* The index of specified here must be in range [0, numSatRegions)
*/
static void setMsfn(unsigned satRegionIdx,
const TabulatedFunction& msfnKrsg,
const TabulatedFunction& msfnKro)
{
msfnKrsg_[satRegionIdx] = msfnKrsg;
msfnKro_[satRegionIdx] = msfnKro;
}
/*!
* \brief Misicibe residual oil saturation function wrt water saturation of a single region.
*
* The index of specified here must be in range [0, numMiscRegions)
*/
static void setSorwmis(unsigned miscRegionIdx,
const TabulatedFunction& sorwmis)
{
sorwmis_[miscRegionIdx] = sorwmis;
}
/*!
* \brief Misicibe critical gas saturation function wrt water saturation of a single region.
*
* The index of specified here must be in range [0, numMiscRegions)
*/
static void setSgcmis(unsigned miscRegionIdx,
const TabulatedFunction& sgcwmis)
{
sgcwmis_[miscRegionIdx] = sgcwmis;
}
/*!
* \brief Todd-Longstaff mixing parameters of a single region.
*
* The index of specified here must be in range [0, numMiscRegions)
*/
static void setTlmixpar(unsigned miscRegionIdx,
const Scalar& tlMixParamViscosity,
const Scalar& tlMixParamDensity)
{
tlMixParamViscosity_[miscRegionIdx] = tlMixParamViscosity;
tlMixParamDensity_[miscRegionIdx] = tlMixParamDensity;
}
/*!
* \brief Todd-Longstaff mixing parameter multiplier wrt pressure of a single region.
*
* The index of specified here must be in range [0, numMiscRegions)
*/
static void setTlpmixpa(unsigned miscRegionIdx,
const TabulatedFunction& tlPMixTable)
{
tlPMixTable_[miscRegionIdx] = tlPMixTable;
}
/*!
* \brief Specify the solvent PVT of a all PVT regions.
*/
static void setSolventPvt(const SolventPvt& value)
{ solventPvt_ = value; }
static void setIsMiscible(const bool isMiscible)
{ isMiscible_ = isMiscible; }
/*!
* \brief Register all run-time parameters for the black-oil solvent module.
*/
static void registerParameters()
{
if (!enableSolvent)
// solvents have disabled at compile time
return;
VtkBlackOilSolventModule<TypeTag>::registerParameters();
}
/*!
* \brief Register all solvent specific VTK and ECL output modules.
*/
static void registerOutputModules(Model& model,
Simulator& simulator)
{
if (!enableSolvent)
// solvents have disabled at compile time
return;
model.addOutputModule(new VtkBlackOilSolventModule<TypeTag>(simulator));
}
static bool primaryVarApplies(unsigned pvIdx)
{
if (!enableSolvent)
// solvents have disabled at compile time
return false;
return pvIdx == solventSaturationIdx;
}
static std::string primaryVarName(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
return "saturation_solvent";
}
static Scalar primaryVarWeight(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if (!enableSolvent)
return false;
return eqIdx == contiSolventEqIdx;
}
static std::string eqName(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
return "conti^solvent";
}
static Scalar eqWeight(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
template <class LhsEval>
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{
if (!enableSolvent)
return;
if (blackoilConserveSurfaceVolume) {
storage[contiSolventEqIdx] +=
Toolbox::template decay<LhsEval>(intQuants.porosity())
* Toolbox::template decay<LhsEval>(intQuants.solventSaturation())
* Toolbox::template decay<LhsEval>(intQuants.solventInverseFormationVolumeFactor());
}
else {
storage[contiSolventEqIdx] +=
Toolbox::template decay<LhsEval>(intQuants.porosity())
* Toolbox::template decay<LhsEval>(intQuants.solventSaturation())
* Toolbox::template decay<LhsEval>(intQuants.solventDensity());
}
}
static void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
if (!enableSolvent)
return;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned upIdx = extQuants.solventUpstreamIndex();
unsigned inIdx = extQuants.interiorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (blackoilConserveSurfaceVolume) {
if (upIdx == inIdx)
flux[contiSolventEqIdx] =
extQuants.solventVolumeFlux()
*up.solventInverseFormationVolumeFactor();
else
flux[contiSolventEqIdx] =
extQuants.solventVolumeFlux()
*decay<Scalar>(up.solventInverseFormationVolumeFactor());
}
else {
if (upIdx == inIdx)
flux[contiSolventEqIdx] =
extQuants.solventVolumeFlux()
*up.solventDensity();
else
flux[contiSolventEqIdx] =
extQuants.solventVolumeFlux()
*decay<Scalar>(up.solventDensity());
}
}
/*!
* \brief Assign the solvent specific primary variables to a PrimaryVariables object
*/
static void assignPrimaryVars(PrimaryVariables& priVars,
Scalar solventSaturation)
{
if (!enableSolvent)
return;
priVars[solventSaturationIdx] = solventSaturation;
}
/*!
* \brief Do a Newton-Raphson update the primary variables of the solvents.
*/
static void updatePrimaryVars(PrimaryVariables& newPv,
const PrimaryVariables& oldPv,
const EqVector& delta)
{
if (!enableSolvent)
return;
// do a plain unchopped Newton update
newPv[solventSaturationIdx] = oldPv[solventSaturationIdx] - delta[solventSaturationIdx];
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables&,
const EqVector&)
{
// do not consider consider the cange of solvent primary variables for
// convergence
// TODO: maybe this should be changed
return static_cast<Scalar>(0.0);
}
/*!
* \brief Return how much a residual is considered an error
*/
static Scalar computeResidualError(const EqVector& resid)
{
// do not weight the residual of solvents when it comes to convergence
return std::abs(Toolbox::scalarValue(resid[contiSolventEqIdx]));
}
template <class DofEntity>
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
{
if (!enableSolvent)
return;
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[solventSaturationIdx];
}
template <class DofEntity>
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
{
if (!enableSolvent)
return;
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[solventSaturationIdx];
// set the primary variables for the beginning of the current time step.
priVars1 = priVars0[solventSaturationIdx];
}
static const SolventPvt& solventPvt()
{ return solventPvt_; }
static const TabulatedFunction& ssfnKrg(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return ssfnKrg_[satnumRegionIdx];
}
static const TabulatedFunction& ssfnKrs(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return ssfnKrs_[satnumRegionIdx];
}
static const TabulatedFunction& sof2Krn(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return sof2Krn_[satnumRegionIdx];
}
static const TabulatedFunction& misc(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return misc_[miscnumRegionIdx];
}
static const TabulatedFunction& pmisc(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return pmisc_[miscnumRegionIdx];
}
static const TabulatedFunction& msfnKrsg(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return msfnKrsg_[satnumRegionIdx];
}
static const TabulatedFunction& msfnKro(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return msfnKro_[satnumRegionIdx];
}
static const TabulatedFunction& sorwmis(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return sorwmis_[miscnumRegionIdx];
}
static const TabulatedFunction& sgcwmis(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return sgcwmis_[miscnumRegionIdx];
}
static const TabulatedFunction& tlPMixTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return tlPMixTable_[miscnumRegionIdx];
}
static const Scalar& tlMixParamViscosity(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return tlMixParamViscosity_[miscnumRegionIdx];
}
static const Scalar& tlMixParamDensity(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned miscnumRegionIdx = elemCtx.problem().miscnumRegionIndex(elemCtx, scvIdx, timeIdx);
return tlMixParamDensity_[miscnumRegionIdx];
}
static bool isMiscible()
{
return isMiscible_;
}
private:
static SolventPvt solventPvt_;
static std::vector<TabulatedFunction> ssfnKrg_; // the krg(Fs) column of the SSFN table
static std::vector<TabulatedFunction> ssfnKrs_; // the krs(Fs) column of the SSFN table
static std::vector<TabulatedFunction> sof2Krn_; // the krn(Sn) column of the SOF2 table
static std::vector<TabulatedFunction> misc_; // the misc(Ss) column of the MISC table
static std::vector<TabulatedFunction> pmisc_; // the pmisc(pg) column of the PMISC table
static std::vector<TabulatedFunction> msfnKrsg_; // the krsg(Ssg) column of the MSFN table
static std::vector<TabulatedFunction> msfnKro_; // the kro(Ssg) column of the MSFN table
static std::vector<TabulatedFunction> sorwmis_; // the sorwmis(Sw) column of the SORWMIS table
static std::vector<TabulatedFunction> sgcwmis_; // the sgcwmis(Sw) column of the SGCWMIS table
static std::vector<Scalar> tlMixParamViscosity_; // Todd-Longstaff mixing parameter for viscosity
static std::vector<Scalar> tlMixParamDensity_; // Todd-Longstaff mixing parameter for density
static std::vector<TabulatedFunction> tlPMixTable_; // the tlpmixpa(Po) column of the TLPMIXPA table
static bool isMiscible_;
};
template <class TypeTag, bool enableSolventV>
typename BlackOilSolventModule<TypeTag, enableSolventV>::SolventPvt
BlackOilSolventModule<TypeTag, enableSolventV>::solventPvt_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::ssfnKrg_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::ssfnKrs_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::sof2Krn_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::misc_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::pmisc_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::msfnKrsg_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::msfnKro_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::sorwmis_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::sgcwmis_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::Scalar>
BlackOilSolventModule<TypeTag, enableSolventV>::tlMixParamViscosity_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::Scalar>
BlackOilSolventModule<TypeTag, enableSolventV>::tlMixParamDensity_;
template <class TypeTag, bool enableSolventV>
std::vector<typename BlackOilSolventModule<TypeTag, enableSolventV>::TabulatedFunction>
BlackOilSolventModule<TypeTag, enableSolventV>::tlPMixTable_;
template <class TypeTag, bool enableSolventV>
bool
BlackOilSolventModule<TypeTag, enableSolventV>::isMiscible_;
/*!
* \ingroup BlackOil
* \class Opm::BlackOilSolventIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* solvents extension of the black-oil model.
*/
template <class TypeTag, bool enableSolventV = getPropValue<TypeTag, Properties::EnableSolvent>()>
class BlackOilSolventIntensiveQuantities
{
using Implementation = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using SolventModule = BlackOilSolventModule<TypeTag>;
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
static constexpr int solventSaturationIdx = Indices::solventSaturationIdx;
static constexpr int oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr int waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr double cutOff = 1e-12;
public:
/*!
* \brief Called before the saturation functions are doing their magic
*
* At this point, the saturations of the fluid state correspond to those if the phases
* were pure hydrocarbons.
*/
void solventPreSatFuncUpdate_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
auto& fs = asImp_().fluidState_;
solventSaturation_ = priVars.makeEvaluation(solventSaturationIdx, timeIdx, elemCtx.linearizationType());
hydrocarbonSaturation_ = fs.saturation(gasPhaseIdx);
// apply a cut-off. Don't waste calculations if no solvent
if (solventSaturation().value() < cutOff)
return;
// make the saturation of the gas phase which is used by the saturation functions
// the sum of the solvent "saturation" and the saturation the hydrocarbon gas.
fs.setSaturation(gasPhaseIdx, hydrocarbonSaturation_ + solventSaturation_);
}
/*!
* \brief Called after the saturation functions have been doing their magic
*
* After this function, all saturations, pressures
* and relative permeabilities must be final. (i.e., the "hydrocarbon
* saturations".)
*/
void solventPostSatFuncUpdate_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
// revert the gas "saturation" of the fluid state back to the saturation of the
// hydrocarbon gas.
auto& fs = asImp_().fluidState_;
fs.setSaturation(gasPhaseIdx, hydrocarbonSaturation_);
solventMobility_ = 0.0;
// apply a cut-off. Don't waste calculations if no solvent
if (solventSaturation().value() < cutOff)
return;
// Pressure effects on capillary pressure miscibility
if (SolventModule::isMiscible()) {
const Evaluation& p = fs.pressure(oilPhaseIdx); // or gas pressure?
const Evaluation pmisc = SolventModule::pmisc(elemCtx, dofIdx, timeIdx).eval(p, /*extrapolate=*/true);
const Evaluation& pgImisc = fs.pressure(gasPhaseIdx);
// compute capillary pressure for miscible fluid
const auto& problem = elemCtx.problem();
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
Evaluation pgMisc = 0.0;
Evaluation pC[numPhases];
const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx);
MaterialLaw::capillaryPressures(pC, materialParams, fs);
//oil is the reference phase for pressure
const auto linearizationType = elemCtx.linearizationType();
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv)
pgMisc = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx, linearizationType);
else {
const Evaluation& po = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx, linearizationType);
pgMisc = po + (pC[gasPhaseIdx] - pC[oilPhaseIdx]);
}
fs.setPressure(gasPhaseIdx, pmisc * pgMisc + (1.0 - pmisc) * pgImisc);
}
Evaluation gasSolventSat = hydrocarbonSaturation_ + solventSaturation_;
if (gasSolventSat.value() < cutOff) // avoid division by zero
return;
Evaluation Fhydgas = hydrocarbonSaturation_/gasSolventSat;
Evaluation Fsolgas = solventSaturation_/gasSolventSat;
// account for miscibility of oil and solvent
if (SolventModule::isMiscible()) {
const auto& misc = SolventModule::misc(elemCtx, dofIdx, timeIdx);
const auto& pmisc = SolventModule::pmisc(elemCtx, dofIdx, timeIdx);
const Evaluation& p = fs.pressure(oilPhaseIdx); // or gas pressure?
const Evaluation miscibility = misc.eval(Fsolgas, /*extrapolate=*/true) * pmisc.eval(p, /*extrapolate=*/true);
// TODO adjust endpoints of sn and ssg
unsigned cellIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
const auto& materialLawManager = elemCtx.problem().materialLawManager();
const auto& scaledDrainageInfo =
materialLawManager->oilWaterScaledEpsInfoDrainage(cellIdx);
const Scalar& sgcr = scaledDrainageInfo.Sgcr;
const Scalar& sogcr = scaledDrainageInfo.Sogcr;
const Evaluation& sw = fs.saturation(waterPhaseIdx);
const auto& sorwmis = SolventModule::sorwmis(elemCtx, dofIdx, timeIdx);
const auto& sgcwmis = SolventModule::sgcwmis(elemCtx, dofIdx, timeIdx);
Evaluation sor = miscibility * sorwmis.eval(sw, /*extrapolate=*/true) + (1.0 - miscibility) * sogcr;
Evaluation sgc = miscibility * sgcwmis.eval(sw, /*extrapolate=*/true) + (1.0 - miscibility) * sgcr;
const Evaluation oilGasSolventSat = gasSolventSat + fs.saturation(oilPhaseIdx);
const Evaluation zero = 0.0;
const Evaluation oilGasSolventEffSat = std::max(oilGasSolventSat - sor - sgc, zero);
Evaluation F_totalGas = 0.0;
if (oilGasSolventEffSat.value() > cutOff) {
const Evaluation gasSolventEffSat = std::max(gasSolventSat - sgc, zero);
F_totalGas = gasSolventEffSat / oilGasSolventEffSat;
}
const auto& msfnKro = SolventModule::msfnKro(elemCtx, dofIdx, timeIdx);
const auto& msfnKrsg = SolventModule::msfnKrsg(elemCtx, dofIdx, timeIdx);
const auto& sof2Krn = SolventModule::sof2Krn(elemCtx, dofIdx, timeIdx);
const Evaluation mkrgt = msfnKrsg.eval(F_totalGas, /*extrapolate=*/true) * sof2Krn.eval(oilGasSolventSat, /*extrapolate=*/true);
const Evaluation mkro = msfnKro.eval(F_totalGas, /*extrapolate=*/true) * sof2Krn.eval(oilGasSolventSat, /*extrapolate=*/true);
Evaluation& kro = asImp_().mobility_[oilPhaseIdx];
Evaluation& krg = asImp_().mobility_[gasPhaseIdx];
// combine immiscible and miscible part of the relperm
krg *= (1.0 - miscibility);
krg += miscibility * mkrgt;
kro *= (1.0 - miscibility);
kro += miscibility * mkro;
}
// compute the mobility of the solvent "phase" and modify the gas phase
const auto& ssfnKrg = SolventModule::ssfnKrg(elemCtx, dofIdx, timeIdx);
const auto& ssfnKrs = SolventModule::ssfnKrs(elemCtx, dofIdx, timeIdx);
Evaluation& krg = asImp_().mobility_[gasPhaseIdx];
solventMobility_ = krg * ssfnKrs.eval(Fsolgas, /*extrapolate=*/true);
krg *= ssfnKrg.eval(Fhydgas, /*extrapolate=*/true);
}
/*!
* \brief Update the intensive PVT properties needed to handle solvents from the
* primary variables.
*
* At this point the pressures and saturations of the fluid state are correct.
*/
void solventPvtUpdate_(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
const auto& iq = asImp_();
const auto& fs = iq.fluidState();
const auto& solventPvt = SolventModule::solventPvt();
unsigned pvtRegionIdx = iq.pvtRegionIndex();
solventRefDensity_ = solventPvt.referenceDensity(pvtRegionIdx);
const Evaluation& T = fs.temperature(gasPhaseIdx);
const Evaluation& p = fs.pressure(gasPhaseIdx);
solventInvFormationVolumeFactor_ = solventPvt.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
solventDensity_ = solventInvFormationVolumeFactor_*solventRefDensity_;
solventViscosity_ = solventPvt.viscosity(pvtRegionIdx, T, p);
effectiveProperties(elemCtx, scvIdx, timeIdx);
solventMobility_ /= solventViscosity_;
}
const Evaluation& solventSaturation() const
{ return solventSaturation_; }
const Evaluation& solventDensity() const
{ return solventDensity_; }
const Evaluation& solventViscosity() const
{ return solventViscosity_; }
const Evaluation& solventMobility() const
{ return solventMobility_; }
const Evaluation& solventInverseFormationVolumeFactor() const
{ return solventInvFormationVolumeFactor_; }
// This could be stored pr pvtRegion instead
const Scalar& solventRefDensity() const
{ return solventRefDensity_; }
private:
// Computes the effective properties based on
// Todd-Longstaff mixing model.
void effectiveProperties(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
if (!SolventModule::isMiscible())
return;
// Don't waste calculations if no solvent
// Apply a cut-off for small and negative solvent saturations
if (solventSaturation() < cutOff)
return;
auto& fs = asImp_().fluidState_;
// Compute effective saturations
const auto& sorwmis = SolventModule::sorwmis(elemCtx, scvIdx, timeIdx);
const auto& sgcwmis = SolventModule::sgcwmis(elemCtx, scvIdx, timeIdx);
const Evaluation& sw = fs.saturation(waterPhaseIdx);
const Evaluation zero = 0.0;
const Evaluation oilEffSat = std::max(fs.saturation(oilPhaseIdx) - sorwmis.eval(sw, /*extrapolate=*/true),zero);
const Evaluation gasEffSat = std::max(fs.saturation(gasPhaseIdx) - sgcwmis.eval(sw, /*extrapolate=*/true),zero);
const Evaluation solventEffSat = std::max(solventSaturation() - sgcwmis.eval(sw, /*extrapolate=*/true),zero);
const Evaluation oilGasSolventEffSat = oilEffSat + gasEffSat + solventEffSat;
const Evaluation oilSolventEffSat = oilEffSat + solventEffSat;
const Evaluation solventGasEffSat = solventEffSat + gasEffSat;
// Compute effective viscosities
const Evaluation& muGas = fs.viscosity(gasPhaseIdx);
const Evaluation& muOil = fs.viscosity(oilPhaseIdx);
const Evaluation& muSolvent = solventViscosity_;
assert(muOil.value() > 0);
assert(muGas.value() > 0);
assert(muSolvent.value() > 0);
const Evaluation muOilPow = pow(muOil, 0.25);
const Evaluation muGasPow = pow(muGas, 0.25);
const Evaluation muSolventPow = pow(muSolvent, 0.25);
Evaluation muMixOilSolvent = muOil;
if (oilSolventEffSat > cutOff)
muMixOilSolvent *= muSolvent / pow(((oilEffSat / oilSolventEffSat) * muSolventPow) + ((solventEffSat / oilSolventEffSat) * muOilPow) , 4.0);
Evaluation muMixSolventGas = muGas;
if (solventGasEffSat > cutOff)
muMixSolventGas *= muSolvent / pow(((gasEffSat / solventGasEffSat) * muSolventPow) + ((solventEffSat / solventGasEffSat) * muGasPow) , 4.0);
Evaluation muMixSolventGasOil = muOil;
if (oilGasSolventEffSat > cutOff)
muMixSolventGasOil *= muSolvent * muGas / pow(((oilEffSat / oilGasSolventEffSat) * muSolventPow * muGasPow)
+ ((solventEffSat / oilGasSolventEffSat) * muOilPow * muGasPow) + ((gasEffSat / oilGasSolventEffSat) * muSolventPow * muOilPow), 4.0);
// Mixing parameter for viscosity
// The pressureMixingParameter represent the miscibility of the solvent while the mixingParameterViscosity the effect of the porous media.
// The pressureMixingParameter is not implemented in ecl100.
const Evaluation& po = fs.pressure(oilPhaseIdx);
const auto& tlPMixTable = SolventModule::tlPMixTable(elemCtx, scvIdx, timeIdx);
const Evaluation tlMixParamMu = SolventModule::tlMixParamViscosity(elemCtx, scvIdx, timeIdx) * tlPMixTable.eval(po, /*extrapolate=*/true);
Evaluation muOilEff = pow(muOil,1.0 - tlMixParamMu) * pow(muMixOilSolvent, tlMixParamMu);
Evaluation muGasEff = pow(muGas,1.0 - tlMixParamMu) * pow(muMixSolventGas, tlMixParamMu);
Evaluation muSolventEff = pow(muSolvent,1.0 - tlMixParamMu) * pow(muMixSolventGasOil, tlMixParamMu);
// Compute effective densities
const Evaluation& rhoGas = fs.density(gasPhaseIdx);
const Evaluation& rhoOil = fs.density(oilPhaseIdx);
const Evaluation& rhoSolvent = solventDensity_;
// Mixing parameter for density
// The pressureMixingParameter represent the miscibility of the solvent while the mixingParameterDenisty the effect of the porous media.
// The pressureMixingParameter is not implemented in ecl100.
const Evaluation tlMixParamRho = SolventModule::tlMixParamDensity(elemCtx, scvIdx, timeIdx) * tlPMixTable.eval(po, /*extrapolate=*/true);
// compute effective viscosities for density calculations. These have to
// be recomputed as a different mixing parameter may be used.
const Evaluation muOilEffPow = pow(pow(muOil, 1.0 - tlMixParamRho) * pow(muMixOilSolvent, tlMixParamRho), 0.25);
const Evaluation muGasEffPow = pow(pow(muGas, 1.0 - tlMixParamRho) * pow(muMixSolventGas, tlMixParamRho), 0.25);
const Evaluation muSolventEffPow = pow(pow(muSolvent, 1.0 - tlMixParamRho) * pow(muMixSolventGasOil, tlMixParamRho), 0.25);
const Evaluation oilGasEffSaturation = oilEffSat + gasEffSat;
Evaluation sof = 0.0;
Evaluation sgf = 0.0;
if (oilGasEffSaturation.value() > cutOff) {
sof = oilEffSat / oilGasEffSaturation;
sgf = gasEffSat / oilGasEffSaturation;
}
const Evaluation muSolventOilGasPow = muSolventPow * ((sgf * muOilPow) + (sof * muGasPow));
Evaluation rhoMixSolventGasOil = 0.0;
if (oilGasSolventEffSat.value() > cutOff)
rhoMixSolventGasOil = (rhoOil * oilEffSat / oilGasSolventEffSat) + (rhoGas * gasEffSat / oilGasSolventEffSat) + (rhoSolvent * solventEffSat / oilGasSolventEffSat);
Evaluation rhoGasEff = 0.0;
if (std::abs(muSolventPow.value() - muGasPow.value()) < cutOff)
rhoGasEff = ((1.0 - tlMixParamRho) * rhoGas) + (tlMixParamRho * rhoMixSolventGasOil);
else {
const Evaluation solventGasEffFraction = (muGasPow * (muSolventPow - muGasEffPow)) / (muGasEffPow * (muSolventPow - muGasPow));
rhoGasEff = (rhoGas * solventGasEffFraction) + (rhoSolvent * (1.0 - solventGasEffFraction));
}
Evaluation rhoOilEff = 0.0;
if (std::abs(muOilPow.value() - muSolventPow.value()) < cutOff) {
rhoOilEff = ((1.0 - tlMixParamRho) * rhoOil) + (tlMixParamRho * rhoMixSolventGasOil);
}
else {
const Evaluation solventOilEffFraction = (muOilPow * (muOilEffPow - muSolventPow)) / (muOilEffPow * (muOilPow - muSolventPow));
rhoOilEff = (rhoOil * solventOilEffFraction) + (rhoSolvent * (1.0 - solventOilEffFraction));
}
Evaluation rhoSolventEff = 0.0;
if (std::abs((muSolventOilGasPow.value() - (muOilPow.value() * muGasPow.value()))) < cutOff)
rhoSolventEff = ((1.0 - tlMixParamRho) * rhoSolvent) + (tlMixParamRho * rhoMixSolventGasOil);
else {
const Evaluation sfraction_se = (muSolventOilGasPow - (muOilPow * muGasPow * muSolventPow / muSolventEffPow)) / (muSolventOilGasPow - (muOilPow * muGasPow));
rhoSolventEff = (rhoSolvent * sfraction_se) + (rhoGas * sgf * (1.0 - sfraction_se)) + (rhoOil * sof * (1.0 - sfraction_se));
}
unsigned pvtRegionIdx = asImp_().pvtRegionIndex();
// compute invB from densities.
const Evaluation bOilEff = rhoOilEff / (FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx) + FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx) * fs.Rs());
const Evaluation bGasEff = rhoGasEff / (FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx) + FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx) * fs.Rv());
const Evaluation bSolventEff = rhoSolventEff / solventRefDensity();
// account for pressure effects
const auto& pmiscTable = SolventModule::pmisc(elemCtx, scvIdx, timeIdx);
const Evaluation pmisc = pmiscTable.eval(po, /*extrapolate=*/true);
// copy the unmodified invB factors
const Evaluation bo = fs.invB(oilPhaseIdx);
const Evaluation bg = fs.invB(gasPhaseIdx);
const Evaluation bs = solventInverseFormationVolumeFactor();
// Set the effective invB factors
fs.setInvB(oilPhaseIdx, pmisc * bOilEff + (1.0 - pmisc) * bo);
fs.setInvB(gasPhaseIdx, pmisc * bGasEff + (1.0 - pmisc) * bg);
solventInvFormationVolumeFactor_ = pmisc * bSolventEff + (1.0 - pmisc) * bs;
// set the densities
fs.setDensity(oilPhaseIdx,
fs.invB(oilPhaseIdx)
*(FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx)
+ FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx)*fs.Rs()));
fs.setDensity(gasPhaseIdx,
fs.invB(gasPhaseIdx)
*(FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx)
+ FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx)*fs.Rv()));
solventDensity_ = solventInverseFormationVolumeFactor()*solventRefDensity();
// set the viscosity / mobility
// TODO make it possible to store and modify the viscosity in fs directly
// keep the mu*b interpolation
Evaluation& mobo = asImp_().mobility_[oilPhaseIdx];
muOilEff = fs.invB(oilPhaseIdx) / (pmisc * bOilEff / muOilEff + (1.0 - pmisc) * bo / muOil);
mobo *= muOil / muOilEff;
Evaluation& mobg = asImp_().mobility_[gasPhaseIdx];
muGasEff = fs.invB(gasPhaseIdx) / (pmisc * bGasEff / muGasEff + (1.0 - pmisc) * bg / muGas);
mobg *= muGas / muGasEff;
// Update viscosity of solvent
solventViscosity_ = solventInvFormationVolumeFactor_ / (pmisc * bSolventEff / muSolventEff + (1.0 - pmisc) * bs / muSolvent);
}
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation hydrocarbonSaturation_;
Evaluation solventSaturation_;
Evaluation solventDensity_;
Evaluation solventViscosity_;
Evaluation solventMobility_;
Evaluation solventInvFormationVolumeFactor_;
Scalar solventRefDensity_;
};
template <class TypeTag>
class BlackOilSolventIntensiveQuantities<TypeTag, false>
{
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
void solventPreSatFuncUpdate_(const ElementContext&,
unsigned,
unsigned)
{ }
void solventPostSatFuncUpdate_(const ElementContext&,
unsigned,
unsigned)
{ }
void solventPvtUpdate_(const ElementContext&,
unsigned,
unsigned)
{ }
const Evaluation& solventSaturation() const
{ throw std::runtime_error("solventSaturation() called but solvents are disabled"); }
const Evaluation& solventDensity() const
{ throw std::runtime_error("solventDensity() called but solvents are disabled"); }
const Evaluation& solventViscosity() const
{ throw std::runtime_error("solventViscosity() called but solvents are disabled"); }
const Evaluation& solventMobility() const
{ throw std::runtime_error("solventMobility() called but solvents are disabled"); }
const Evaluation& solventInverseFormationVolumeFactor() const
{ throw std::runtime_error("solventInverseFormationVolumeFactor() called but solvents are disabled"); }
const Scalar& solventRefDensity() const
{ throw std::runtime_error("solventRefDensity() called but solvents are disabled"); }
};
/*!
* \ingroup BlackOil
* \class Opm::BlackOilSolventExtensiveQuantities
*
* \brief Provides the solvent specific extensive quantities to the generic black-oil
* module's extensive quantities.
*/
template <class TypeTag, bool enableSolventV = getPropValue<TypeTag, Properties::EnableSolvent>()>
class BlackOilSolventExtensiveQuantities
{
using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Toolbox = MathToolbox<Evaluation>;
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr int dimWorld = GridView::dimensionworld;
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
public:
/*!
* \brief Method which calculates the volume flux of the polymer "phase" using the
* pressure potential gradient of the gas phase and the intrinsic permeability
*/
template <class Dummy = bool> // we need to make this method a template to avoid
// compiler errors if it is not instantiated!
void updateVolumeFluxPerm(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
PressureCallback<TypeTag> pressureCallback(elemCtx);
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
const auto& faceNormal = scvf.normal();
unsigned i = scvf.interiorIndex();
unsigned j = scvf.exteriorIndex();
// calculate the "raw" pressure gradient
DimEvalVector solventPGrad;
pressureCallback.setPhaseIndex(gasPhaseIdx);
gradCalc.calculateGradient(solventPGrad,
elemCtx,
scvfIdx,
pressureCallback);
Valgrind::CheckDefined(solventPGrad);
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& gEx = elemCtx.problem().gravity(elemCtx, j, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posEx = elemCtx.pos(j, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the centers of the control volumes
DimVector distVecIn(posIn);
DimVector distVecEx(posEx);
DimVector distVecTotal(posEx);
distVecIn -= posFace;
distVecEx -= posFace;
distVecTotal -= posIn;
Scalar absDistTotalSquared = distVecTotal.two_norm2();
// calculate the hydrostatic pressure at the integration point of the face
auto rhoIn = intQuantsIn.solventDensity();
auto pStatIn = - rhoIn*(gIn*distVecIn);
// the quantities on the exterior side of the face do not influence the
// result for the TPFA scheme, so they can be treated as scalar values.
Scalar rhoEx = Toolbox::value(intQuantsEx.solventDensity());
Scalar pStatEx = - rhoEx*(gEx*distVecEx);
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior
DimEvalVector f(distVecTotal);
f *= (pStatEx - pStatIn)/absDistTotalSquared;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
solventPGrad[dimIdx] += f[dimIdx];
if (!isfinite(solventPGrad[dimIdx]))
throw NumericalIssue("Non-finite potential gradient for solvent 'phase'");
}
}
// determine the upstream and downstream DOFs
Evaluation solventPGradNormal = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
solventPGradNormal += solventPGrad[dimIdx]*faceNormal[dimIdx];
if (solventPGradNormal > 0) {
solventUpstreamDofIdx_ = j;
solventDownstreamDofIdx_ = i;
}
else {
solventUpstreamDofIdx_ = i;
solventDownstreamDofIdx_ = j;
}
const auto& up = elemCtx.intensiveQuantities(solventUpstreamDofIdx_, timeIdx);
// this is also slightly hacky because it assumes that the derivative of the
// flux between two DOFs only depends on the primary variables in the
// upstream direction. For non-TPFA flux approximation schemes, this is not
// true...
if (solventUpstreamDofIdx_ == i)
solventVolumeFlux_ = solventPGradNormal*up.solventMobility();
else
solventVolumeFlux_ = solventPGradNormal*scalarValue(up.solventMobility());
}
/*!
* \brief Method which calculates the volume flux of the polymer "phase" using the
* gas pressure potential difference between cells and transmissibilities
*/
template <class Dummy = bool> // we need to make this method a template to avoid
// compiler errors if it is not instantiated!
void updateVolumeFluxTrans(const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
const ExtensiveQuantities& extQuants = asImp_();
unsigned interiorDofIdx = extQuants.interiorIndex();
unsigned exteriorDofIdx = extQuants.exteriorIndex();
assert(interiorDofIdx != exteriorDofIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
unsigned I = elemCtx.globalSpaceIndex(interiorDofIdx, timeIdx);
unsigned J = elemCtx.globalSpaceIndex(exteriorDofIdx, timeIdx);
Scalar thpres = elemCtx.problem().thresholdPressure(I, J);
Scalar trans = elemCtx.problem().transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
Scalar zIn = elemCtx.problem().dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
Scalar zEx = elemCtx.problem().dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
Scalar distZ = zIn - zEx;
const Evaluation& rhoIn = intQuantsIn.solventDensity();
Scalar rhoEx = Toolbox::value(intQuantsEx.solventDensity());
const Evaluation& rhoAvg = rhoIn*0.5 + rhoEx*0.5;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(gasPhaseIdx);
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(gasPhaseIdx));
pressureExterior += distZ*g*rhoAvg;
Evaluation pressureDiffSolvent = pressureExterior - pressureInterior;
if (std::abs(scalarValue(pressureDiffSolvent)) > thpres) {
if (pressureDiffSolvent < 0.0)
pressureDiffSolvent += thpres;
else
pressureDiffSolvent -= thpres;
}
else
pressureDiffSolvent = 0.0;
if (pressureDiffSolvent > 0.0) {
solventUpstreamDofIdx_ = exteriorDofIdx;
solventDownstreamDofIdx_ = interiorDofIdx;
}
else if (pressureDiffSolvent < 0.0) {
solventUpstreamDofIdx_ = interiorDofIdx;
solventDownstreamDofIdx_ = exteriorDofIdx;
}
else {
// pressure potential gradient is zero; force consistent upstream and
// downstream indices over the intersection regardless of the side which it
// is looked at.
solventUpstreamDofIdx_ = std::min(interiorDofIdx, exteriorDofIdx);
solventDownstreamDofIdx_ = std::max(interiorDofIdx, exteriorDofIdx);
solventVolumeFlux_ = 0.0;
return;
}
Scalar faceArea = elemCtx.stencil(timeIdx).interiorFace(scvfIdx).area();
const IntensiveQuantities& up = elemCtx.intensiveQuantities(solventUpstreamDofIdx_, timeIdx);
if (solventUpstreamDofIdx_ == interiorDofIdx)
solventVolumeFlux_ =
up.solventMobility()
*(-trans/faceArea)
*pressureDiffSolvent;
else
solventVolumeFlux_ =
scalarValue(up.solventMobility())
*(-trans/faceArea)
*pressureDiffSolvent;
}
unsigned solventUpstreamIndex() const
{ return solventUpstreamDofIdx_; }
unsigned solventDownstreamIndex() const
{ return solventDownstreamDofIdx_; }
const Evaluation& solventVolumeFlux() const
{ return solventVolumeFlux_; }
void setSolventVolumeFlux(const Evaluation& solventVolumeFlux)
{ solventVolumeFlux_ = solventVolumeFlux; }
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation solventVolumeFlux_;
unsigned solventUpstreamDofIdx_;
unsigned solventDownstreamDofIdx_;
};
template <class TypeTag>
class BlackOilSolventExtensiveQuantities<TypeTag, false>
{
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
public:
void updateVolumeFluxPerm(const ElementContext&,
unsigned,
unsigned)
{ }
void updateVolumeFluxTrans(const ElementContext&,
unsigned,
unsigned)
{ }
unsigned solventUpstreamIndex() const
{ throw std::runtime_error("solventUpstreamIndex() called but solvents are disabled"); }
unsigned solventDownstreamIndex() const
{ throw std::runtime_error("solventDownstreamIndex() called but solvents are disabled"); }
const Evaluation& solventVolumeFlux() const
{ throw std::runtime_error("solventVolumeFlux() called but solvents are disabled"); }
void setSolventVolumeFlux(const Evaluation& /* solventVolumeFlux */)
{ throw std::runtime_error("setSolventVolumeFlux() called but solvents are disabled"); }
};
} // namespace Opm
#endif