opm-simulators/opm/autodiff/BlackoilAquiferModel_impl.hpp
2018-05-30 14:21:19 +02:00

224 lines
7.4 KiB
C++

namespace Opm {
template<typename TypeTag>
BlackoilAquiferModel<TypeTag>::
BlackoilAquiferModel(Simulator& ebosSimulator,
const ModelParameters& param,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, param_(param)
, terminal_output_(terminal_output)
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
{
const auto& eclState = ebosSimulator_.vanguard().eclState();
phase_usage_ = phaseUsageFromDeck(eclState);
active_.resize(phase_usage_.MaxNumPhases, false);
for (int p = 0; p < phase_usage_.MaxNumPhases; ++p) {
active_[ p ] = phase_usage_.phase_used[ p ] != 0;
}
const auto& gridView = ebosSimulator_.gridView();
// calculate the number of elements of the compressed sequential grid. this needs
// to be done in two steps because the dune communicator expects a reference as
// argument for sum()
number_of_cells_ = gridView.size(/*codim=*/0);
global_nc_ = gridView.comm().sum(number_of_cells_);
gravity_ = ebosSimulator_.problem().gravity()[2];
init(ebosSimulator_, aquifers_);
}
// called at the beginning of a time step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: beginTimeStep()
{
}
// called at the end of a time step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: timeStepSucceeded(const SimulatorTimerInterface& timer)
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->after_time_step(timer);
}
}
// called at the beginning of a report step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: beginReportStep(const int time_step)
{
}
// called at the end of a report step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: endReportStep()
{
}
// Get the last report step
template<typename TypeTag>
const SimulatorReport&
BlackoilAquiferModel<TypeTag>:: lastReport() const
{
return last_report_;
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>::
assemble( const SimulatorTimerInterface& timer,
const int iterationIdx )
{
last_report_ = SimulatorReport();
// We need to update the reservoir pressures connected to the aquifer
updateConnectionIntensiveQuantities();
if (iterationIdx == 0) {
// We can do the Table check and coefficients update in this function
// For now, it does nothing!
prepareTimeStep(timer);
}
if (param_.solve_aquifereq_initially_ && iterationIdx == 0) {
// solve the aquifer equations as a pre-processing step
last_report_ = solveAquiferEq(timer);
}
assembleAquiferEq(timer);
last_report_.converged = true;
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: updateConnectionIntensiveQuantities() const
{
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
}
template<typename TypeTag>
SimulatorReport
BlackoilAquiferModel<TypeTag>:: solveAquiferEq(const SimulatorTimerInterface& timer)
{
// We need to solve the equilibrium equation first to
// obtain the initial pressure of water in the aquifer
SimulatorReport report = SimulatorReport();
return report;
}
// Protected function: Return number of components in the model.
template<typename TypeTag>
int
BlackoilAquiferModel<TypeTag>:: numComponents() const
{
if (numPhases() == 2) {
return 2;
}
int numComp = FluidSystem::numComponents;
if (has_solvent_) {
numComp ++;
}
return numComp;
}
// Protected function: Return number of aquifers in the model.
template<typename TypeTag>
int
BlackoilAquiferModel<TypeTag>:: numAquifers() const
{
return aquifers_.size();
}
// Protected function: Return number of phases in the model.
template<typename TypeTag>
int
BlackoilAquiferModel<TypeTag>:: numPhases() const
{
const auto& pu = phase_usage_;
return pu.num_phases;
}
// Protected function which calls the individual aquifer models
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: assembleAquiferEq(const SimulatorTimerInterface& timer)
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->assembleAquiferEq(ebosSimulator_, timer);
}
}
// Protected function
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
template<typename TypeTag>
void BlackoilAquiferModel<TypeTag>:: prepareTimeStep(const SimulatorTimerInterface& timer)
{
// Here we can ask each carter tracy aquifers to get the current previous time step's pressure
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->before_time_step(ebosSimulator_, timer);
}
}
// Protected function: Returns a reference to the aquifers members in the model
template<typename TypeTag>
const std::vector< AquiferCarterTracy<TypeTag> >&
BlackoilAquiferModel<TypeTag>:: aquifers()
{
return aquifers_;
}
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init(const Simulator& ebosSimulator, std::vector< AquiferCarterTracy<TypeTag> >& aquifers)
{
updateConnectionIntensiveQuantities();
const auto& deck = ebosSimulator.vanguard().deck();
const auto& eclState = ebosSimulator.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
AquiferCT aquiferct = AquiferCT(eclState,deck);
Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
assert( aquifersData.size() == aquifer_connect.size() );
for (int i = 0; i < aquifersData.size(); ++i)
{
aquifers.push_back(
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), numComponents(), gravity_, ebosSimulator_)
);
}
}
} // namespace Opm