opm-simulators/opm/models/discretefracture/discretefractureextensivequantities.hh
2020-06-10 13:49:42 +02:00

139 lines
5.3 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureExtensiveQuantities
*/
#ifndef EWOMS_DISCRETE_FRACTURE_EXTENSIVE_QUANTITIES_HH
#define EWOMS_DISCRETE_FRACTURE_EXTENSIVE_QUANTITIES_HH
#include <opm/models/immiscible/immiscibleextensivequantities.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
* \ingroup ExtensiveQuantities
*
* \brief This class expresses all intensive quantities of the discrete fracture model.
*/
template <class TypeTag>
class DiscreteFractureExtensiveQuantities : public ImmiscibleExtensiveQuantities<TypeTag>
{
using ParentType = ImmiscibleExtensiveQuantities<TypeTag>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = FluidSystem::numPhases };
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
public:
/*!
* \copydoc MultiPhaseBaseExtensiveQuantities::update()
*/
void update(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, scvfIdx, timeIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
unsigned insideScvIdx = scvf.interiorIndex();
unsigned outsideScvIdx = scvf.exteriorIndex();
unsigned globalI = elemCtx.globalSpaceIndex(insideScvIdx, timeIdx);
unsigned globalJ = elemCtx.globalSpaceIndex(outsideScvIdx, timeIdx);
const auto& fractureMapper = elemCtx.problem().fractureMapper();
if (!fractureMapper.isFractureEdge(globalI, globalJ))
// do nothing if no fracture goes though the current edge
return;
// average the intrinsic permeability of the fracture
elemCtx.problem().fractureFaceIntrinsicPermeability(fractureIntrinsicPermeability_,
elemCtx, scvfIdx, timeIdx);
auto distDirection = elemCtx.pos(outsideScvIdx, timeIdx);
distDirection -= elemCtx.pos(insideScvIdx, timeIdx);
distDirection /= distDirection.two_norm();
const auto& problem = elemCtx.problem();
fractureWidth_ = problem.fractureWidth(elemCtx, insideScvIdx,
outsideScvIdx, timeIdx);
assert(fractureWidth_ < scvf.area());
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const auto& pGrad = extQuants.potentialGrad(phaseIdx);
unsigned upstreamIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
// multiply with the fracture mobility of the upstream vertex
fractureIntrinsicPermeability_.mv(pGrad,
fractureFilterVelocity_[phaseIdx]);
fractureFilterVelocity_[phaseIdx] *= -up.fractureMobility(phaseIdx);
// divide the volume flux by two. This is required because
// a fracture is always shared by two sub-control-volume
// faces.
fractureVolumeFlux_[phaseIdx] = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
fractureVolumeFlux_[phaseIdx] +=
(fractureFilterVelocity_[phaseIdx][dimIdx] * distDirection[dimIdx])
* (fractureWidth_ / 2.0) / scvf.area();
}
}
public:
const DimMatrix& fractureIntrinsicPermeability() const
{ return fractureIntrinsicPermeability_; }
Scalar fractureVolumeFlux(unsigned phaseIdx) const
{ return fractureVolumeFlux_[phaseIdx]; }
Scalar fractureWidth() const
{ return fractureWidth_; }
const DimVector& fractureFilterVelocity(unsigned phaseIdx) const
{ return fractureFilterVelocity_[phaseIdx]; }
private:
DimMatrix fractureIntrinsicPermeability_;
DimVector fractureFilterVelocity_[numPhases];
Scalar fractureVolumeFlux_[numPhases];
Scalar fractureWidth_;
};
} // namespace Opm
#endif