opm-simulators/opm/models/ncp/ncpmodel.hh
Bård Skaflestad 3a6cb1422f Merge pull request #766 from akva2/janitoring
remove namespace qualifiers from symbols in Opm namespace
2022-12-19 12:04:01 +01:00

485 lines
17 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::NcpModel
*/
#ifndef EWOMS_NCP_MODEL_HH
#define EWOMS_NCP_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "ncpproperties.hh"
#include "ncplocalresidual.hh"
#include "ncpextensivequantities.hh"
#include "ncpprimaryvariables.hh"
#include "ncpboundaryratevector.hh"
#include "ncpratevector.hh"
#include "ncpintensivequantities.hh"
#include "ncpnewtonmethod.hh"
#include "ncpindices.hh"
#include <opm/common/Exceptions.hpp>
#include <opm/models/common/multiphasebasemodel.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkenergymodule.hh>
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <sstream>
#include <string>
#include <vector>
#include <array>
namespace Opm {
template <class TypeTag>
class NcpModel;
}
namespace Opm::Properties {
namespace TTag {
/*!
* \brief Define the type tag for the compositional NCP model.
*/
struct NcpModel { using InheritsFrom = std::tuple<VtkDiffusion,
VtkEnergy,
VtkComposition,
MultiPhaseBaseModel>; };
} // namespace TTag
//! Use the Ncp local jacobian operator for the compositional NCP model
template<class TypeTag>
struct LocalResidual<TypeTag, TTag::NcpModel> { using type = NcpLocalResidual<TypeTag>; };
//! Use the Ncp specific newton method for the compositional NCP model
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::NcpModel> { using type = NcpNewtonMethod<TypeTag>; };
//! the Model property
template<class TypeTag>
struct Model<TypeTag, TTag::NcpModel> { using type = NcpModel<TypeTag>; };
//! The type of the base base class for actual problems
template<class TypeTag>
struct BaseProblem<TypeTag, TTag::NcpModel> { using type = MultiPhaseBaseProblem<TypeTag>; };
//! Disable the energy equation by default
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::NcpModel> { static constexpr bool value = false; };
//! disable diffusion by default
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::NcpModel> { static constexpr bool value = false; };
//! the RateVector property
template<class TypeTag>
struct RateVector<TypeTag, TTag::NcpModel> { using type = NcpRateVector<TypeTag>; };
//! the BoundaryRateVector property
template<class TypeTag>
struct BoundaryRateVector<TypeTag, TTag::NcpModel> { using type = NcpBoundaryRateVector<TypeTag>; };
//! the PrimaryVariables property
template<class TypeTag>
struct PrimaryVariables<TypeTag, TTag::NcpModel> { using type = NcpPrimaryVariables<TypeTag>; };
//! the IntensiveQuantities property
template<class TypeTag>
struct IntensiveQuantities<TypeTag, TTag::NcpModel> { using type = NcpIntensiveQuantities<TypeTag>; };
//! the ExtensiveQuantities property
template<class TypeTag>
struct ExtensiveQuantities<TypeTag, TTag::NcpModel> { using type = NcpExtensiveQuantities<TypeTag>; };
//! The indices required by the compositional NCP model
template<class TypeTag>
struct Indices<TypeTag, TTag::NcpModel> { using type = NcpIndices<TypeTag, 0>; };
//! The unmodified weight for the pressure primary variable
template<class TypeTag>
struct NcpPressureBaseWeight<TypeTag, TTag::NcpModel>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
//! The weight for the saturation primary variables
template<class TypeTag>
struct NcpSaturationsBaseWeight<TypeTag, TTag::NcpModel>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
//! The unmodified weight for the fugacity primary variables
template<class TypeTag>
struct NcpFugacitiesBaseWeight<TypeTag, TTag::NcpModel>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0e-6;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup NcpModel
*
* \brief A compositional multi-phase model based on non-linear
* complementarity functions.
*
* This model implements a \f$M\f$-phase flow of a fluid mixture
* composed of \f$N\f$ chemical species. The phases are denoted by
* lower index \f$\alpha \in \{ 1, \dots, M \}\f$. All fluid phases
* are mixtures of \f$N \geq M - 1\f$ chemical species which are
* denoted by the upper index \f$\kappa \in \{ 1, \dots, N \} \f$.
*
*
* By default, the standard multi-phase Darcy approach is used to determine
* the velocity, i.e.
* \f[
* \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
* \left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;,
* \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* template<class TypeTag>
struct FluxModule<TypeTag, TTag::MyProblemTypeTag> { using type = ForchheimerFluxModule<TypeTag>; };
* \endcode
*
* The core of the model is the conservation mass of each component by
* means of the equation
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;.
* \f]
*
* For the missing \f$M\f$ model assumptions, the model uses
* non-linear complementarity functions. These are based on the
* observation that if a fluid phase is not present, the sum of the
* mole fractions of this fluid phase is smaller than \f$1\f$, i.e.
* \f[ \forall \alpha: S_\alpha = 0 \implies \sum_\kappa
* x_\alpha^\kappa \leq 1 \f]
*
* Also, if a fluid phase may be present at a given spatial location
* its saturation must be non-negative:
* \f[ \forall \alpha: \sum_\kappa x_\alpha^\kappa = 1 \implies S_\alpha \geq 0
*\f]
*
* Since at any given spatial location, a phase is always either
* present or not present, one of the strict equalities on the
* right hand side is always true, i.e.
* \f[
* \forall \alpha: S_\alpha \left( \sum_\kappa x_\alpha^\kappa - 1 \right) = 0
* \f]
* always holds.
*
* These three equations constitute a non-linear complementarity
* problem, which can be solved using so-called non-linear
* complementarity functions \f$\Phi(a, b)\f$. Such functions have the property
* \f[\Phi(a,b) = 0 \iff a \geq0 \land b \geq0 \land a \cdot b = 0 \f]
*
* Several non-linear complementarity functions have been suggested,
* e.g. the Fischer-Burmeister function
* \f[ \Phi(a,b) = a + b - \sqrt{a^2 + b^2} \;. \f]
* This model uses
* \f[ \Phi(a,b) = \min \{a, b \}\;, \f]
* because of its piecewise linearity.
*
* The model assumes local thermodynamic equilibrium and uses the
* following primary variables:
* - The pressure of the first phase \f$p_1\f$
* - The component fugacities \f$f^1, \dots, f^{N}\f$
* - The saturations of the first \f$M-1\f$ phases \f$S_1, \dots, S_{M-1}\f$
* - Temperature \f$T\f$ if the energy equation is enabled
*/
template <class TypeTag>
class NcpModel
: public MultiPhaseBaseModel<TypeTag>
{
using ParentType = MultiPhaseBaseModel<TypeTag>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { fugacity0Idx = Indices::fugacity0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { saturation0Idx = Indices::saturation0Idx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { ncp0EqIdx = Indices::ncp0EqIdx };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
using ComponentVector = Dune::FieldVector<Scalar, numComponents>;
using Toolbox = MathToolbox<Evaluation>;
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
using DiffusionModule = Opm::DiffusionModule<TypeTag, enableDiffusion>;
public:
NcpModel(Simulator& simulator)
: ParentType(simulator)
{}
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
DiffusionModule::registerParameters();
EnergyModule::registerParameters();
// register runtime parameters of the VTK output modules
VtkCompositionModule<TypeTag>::registerParameters();
if (enableDiffusion)
VtkDiffusionModule<TypeTag>::registerParameters();
if (enableEnergy)
VtkEnergyModule<TypeTag>::registerParameters();
}
/*!
* \copydoc FvBaseDiscretization::finishInit()
*/
void finishInit()
{
ParentType::finishInit();
minActivityCoeff_.resize(this->numGridDof());
std::fill(minActivityCoeff_.begin(), minActivityCoeff_.end(), 1.0);
}
void adaptGrid()
{
ParentType::adaptGrid();
minActivityCoeff_.resize(this->numGridDof());
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "ncp"; }
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(unsigned pvIdx) const
{
std::string s;
if (!(s = EnergyModule::primaryVarName(pvIdx)).empty())
return s;
std::ostringstream oss;
if (pvIdx == pressure0Idx)
oss << "pressure_" << FluidSystem::phaseName(/*phaseIdx=*/0);
else if (saturation0Idx <= pvIdx && pvIdx < saturation0Idx + (numPhases - 1))
oss << "saturation_" << FluidSystem::phaseName(/*phaseIdx=*/pvIdx - saturation0Idx);
else if (fugacity0Idx <= pvIdx && pvIdx < fugacity0Idx + numComponents)
oss << "fugacity^" << FluidSystem::componentName(pvIdx - fugacity0Idx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(unsigned eqIdx) const
{
std::string s;
if (!(s = EnergyModule::eqName(eqIdx)).empty())
return s;
std::ostringstream oss;
if (conti0EqIdx <= eqIdx && eqIdx < conti0EqIdx + numComponents)
oss << "continuity^" << FluidSystem::componentName(eqIdx - conti0EqIdx);
else if (ncp0EqIdx <= eqIdx && eqIdx < ncp0EqIdx + numPhases)
oss << "ncp_" << FluidSystem::phaseName(/*phaseIdx=*/eqIdx - ncp0EqIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::updateBegin
*/
void updateBegin()
{
ParentType::updateBegin();
// find the a reference pressure. The first degree of freedom
// might correspond to non-interior entities which would lead
// to an undefined value, so we have to iterate...
for (unsigned dofIdx = 0; dofIdx < this->numGridDof(); ++ dofIdx) {
if (this->isLocalDof(dofIdx)) {
referencePressure_ =
this->solution(/*timeIdx=*/0)[dofIdx][/*pvIdx=*/Indices::pressure0Idx];
break;
}
}
}
/*!
* \copydoc FvBaseDiscretization::updatePVWeights
*/
void updatePVWeights(const ElementContext& elemCtx) const
{
for (unsigned dofIdx = 0; dofIdx < elemCtx.numDof(/*timeIdx=*/0); ++dofIdx) {
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
minActivityCoeff_[globalIdx][compIdx] = 1e100;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const auto& fs = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState();
minActivityCoeff_[globalIdx][compIdx] =
std::min(minActivityCoeff_[globalIdx][compIdx],
Toolbox::value(fs.fugacityCoefficient(phaseIdx, compIdx))
* Toolbox::value(fs.pressure(phaseIdx)));
Valgrind::CheckDefined(minActivityCoeff_[globalIdx][compIdx]);
}
if (minActivityCoeff_[globalIdx][compIdx] <= 0)
throw NumericalProblem("The minimum activity coefficient for component "+std::to_string(compIdx)
+" on DOF "+std::to_string(globalIdx)+" is negative or zero!");
}
}
}
/*!
* \copydoc FvBaseDiscretization::primaryVarWeight
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
Scalar tmp = EnergyModule::primaryVarWeight(*this, globalDofIdx, pvIdx);
Scalar result;
if (tmp > 0)
// energy related quantity
result = tmp;
else if (fugacity0Idx <= pvIdx && pvIdx < fugacity0Idx + numComponents) {
// component fugacity
unsigned compIdx = pvIdx - fugacity0Idx;
assert(compIdx <= numComponents);
Valgrind::CheckDefined(minActivityCoeff_[globalDofIdx][compIdx]);
static const Scalar fugacityBaseWeight =
getPropValue<TypeTag, Properties::NcpFugacitiesBaseWeight>();
result = fugacityBaseWeight / minActivityCoeff_[globalDofIdx][compIdx];
}
else if (Indices::pressure0Idx == pvIdx) {
static const Scalar pressureBaseWeight = getPropValue<TypeTag, Properties::NcpPressureBaseWeight>();
result = pressureBaseWeight / referencePressure_;
}
else {
#ifndef NDEBUG
unsigned phaseIdx = pvIdx - saturation0Idx;
assert(phaseIdx < numPhases - 1);
#endif
// saturation
static const Scalar saturationsBaseWeight =
getPropValue<TypeTag, Properties::NcpSaturationsBaseWeight>();
result = saturationsBaseWeight;
}
assert(std::isfinite(result));
assert(result > 0);
return result;
}
/*!
* \copydoc FvBaseDiscretization::eqWeight
*/
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
{
Scalar tmp = EnergyModule::eqWeight(*this, globalDofIdx, eqIdx);
if (tmp > 0)
// an energy related equation
return tmp;
// an NCP
else if (ncp0EqIdx <= eqIdx && eqIdx < Indices::ncp0EqIdx + numPhases)
return 1.0;
// a mass conservation equation
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
assert(compIdx <= numComponents);
// make all kg equal
return FluidSystem::molarMass(compIdx);
}
/*!
* \brief Returns the smallest activity coefficient of a component for the
* most current solution at a vertex.
*
* \param globalDofIdx The global index of the vertex (i.e. finite volume) of interest.
* \param compIdx The index of the component of interest.
*/
Scalar minActivityCoeff(unsigned globalDofIdx, unsigned compIdx) const
{ return minActivityCoeff_[globalDofIdx][compIdx]; }
/*!
* \internal
*/
void registerOutputModules_()
{
ParentType::registerOutputModules_();
this->addOutputModule(new VtkCompositionModule<TypeTag>(this->simulator_));
if (enableDiffusion)
this->addOutputModule(new VtkDiffusionModule<TypeTag>(this->simulator_));
if (enableEnergy)
this->addOutputModule(new VtkEnergyModule<TypeTag>(this->simulator_));
}
mutable Scalar referencePressure_;
mutable std::vector<ComponentVector> minActivityCoeff_;
};
} // namespace Opm
#endif