opm-simulators/opm/simulators/linalg/bda/ChowPatelIlu.cpp
2021-03-03 17:12:46 +01:00

632 lines
27 KiB
C++

/*
Copyright 2020 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <opm/simulators/linalg/bda/ChowPatelIlu.hpp>
namespace bda
{
using Opm::OpmLog;
// if PARALLEL is 0:
// Each row gets 1 workgroup, 1 workgroup can do multiple rows sequentially.
// Each block in a row gets 1 workitem, all blocks are expected to be processed simultaneously,
// except when the number of blocks in that row exceeds the number of workitems per workgroup.
// In that case some workitems will process multiple blocks sequentially.
// else:
// Each row gets 1 workgroup, 1 workgroup can do multiple rows sequentially
// Each block in a row gets a warp of 32 workitems, of which 9 are always active.
// Multiple blocks can be processed in parallel if a workgroup contains multiple warps.
// If the number of blocks exceeds the number of warps, some warps will process multiple blocks sequentially.
// Notes:
// PARALLEL 0 should be able to run with any number of workitems per workgroup, but 8 and 16 tend to be quicker than 32.
// PARALLEL 1 should be run with at least 32 workitems per workgroup.
// The recommended number of workgroups for both options is Nb, which gives every row their own workgroup.
// PARALLEL 0 is generally faster, despite not having parallelization.
// only 3x3 blocks are supported
#define PARALLEL 0
#if PARALLEL
inline const char* chow_patel_ilu_sweep_s = R"(
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
// subtract blocks: a = a - b * c
// the output block has 9 entries, each entry is calculated by 1 thread
void blockMultSub(
__local double * restrict a,
__global const double * restrict b,
__global const double * restrict c)
{
const unsigned int block_size = 3;
const unsigned int warp_size = 32;
const unsigned int idx_t = get_local_id(0); // thread id in work group
const unsigned int thread_id_in_warp = idx_t % warp_size; // thread id in warp (32 threads)
if(thread_id_in_warp < block_size * block_size){
const unsigned int row = thread_id_in_warp / block_size;
const unsigned int col = thread_id_in_warp % block_size;
double temp = 0.0;
for (unsigned int k = 0; k < block_size; k++) {
temp += b[block_size * row + k] * c[block_size * k + col];
}
a[block_size * row + col] -= temp;
}
}
// multiply blocks: resMat = mat1 * mat2
// the output block has 9 entries, each entry is calculated by 1 thread
void blockMult(
__local const double * restrict mat1,
__local const double * restrict mat2,
__global double * restrict resMat)
{
const unsigned int block_size = 3;
const unsigned int warp_size = 32;
const unsigned int idx_t = get_local_id(0); // thread id in work group
const unsigned int thread_id_in_warp = idx_t % warp_size; // thread id in warp (32 threads)
if(thread_id_in_warp < block_size * block_size){
const unsigned int row = thread_id_in_warp / block_size;
const unsigned int col = thread_id_in_warp % block_size;
double temp = 0.0;
for (unsigned int k = 0; k < block_size; k++) {
temp += mat1[block_size * row + k] * mat2[block_size * k + col];
}
resMat[block_size * row + col] = temp;
}
}
// invert block: inverse = matrix^{-1}
// the output block has 9 entries, each entry is calculated by 1 thread
void invert(
__global const double * restrict matrix,
__local double * restrict inverse)
{
const unsigned int block_size = 3;
const unsigned int bs = block_size; // rename to shorter name
const unsigned int warp_size = 32;
const unsigned int idx_t = get_local_id(0); // thread id in work group
const unsigned int thread_id_in_warp = idx_t % warp_size; // thread id in warp (32 threads)
if(thread_id_in_warp < block_size * block_size){
// code generated by maple, copied from Dune::DenseMatrix
double t4 = matrix[0] * matrix[4];
double t6 = matrix[0] * matrix[5];
double t8 = matrix[1] * matrix[3];
double t10 = matrix[2] * matrix[3];
double t12 = matrix[1] * matrix[6];
double t14 = matrix[2] * matrix[6];
double det = (t4 * matrix[8] - t6 * matrix[7] - t8 * matrix[8] +
t10 * matrix[7] + t12 * matrix[5] - t14 * matrix[4]);
double t17 = 1.0 / det;
const unsigned int r = thread_id_in_warp / block_size;
const unsigned int c = thread_id_in_warp % block_size;
const unsigned int r1 = (r+1) % bs;
const unsigned int c1 = (c+1) % bs;
const unsigned int r2 = (r+bs-1) % bs;
const unsigned int c2 = (c+bs-1) % bs;
inverse[c*bs+r] = ((matrix[r1*bs+c1] * matrix[r2*bs+c2]) - (matrix[r1*bs+c2] * matrix[r2*bs+c1])) * t17;
}
}
// perform the fixed-point iteration
// all entries in L and U are updated once
// output is written to [LU]tmp
// aij and ujj are local arrays whose size is specified before kernel launch
__kernel void chow_patel_ilu_sweep(
__global const double * restrict Ut_vals,
__global const double * restrict L_vals,
__global const double * restrict LU_vals,
__global const int * restrict Ut_rows,
__global const int * restrict L_rows,
__global const int * restrict LU_rows,
__global const int * restrict Ut_cols,
__global const int * restrict L_cols,
__global const int * restrict LU_cols,
__global double * restrict Ltmp,
__global double * restrict Utmp,
const int Nb,
__local double *aij,
__local double *ujj)
{
const int bs = 3;
const unsigned int warp_size = 32;
const unsigned int work_group_size = get_local_size(0);
const unsigned int idx_b = get_global_id(0) / work_group_size;
const unsigned int num_groups = get_num_groups(0);
const unsigned int warps_per_group = work_group_size / warp_size;
const unsigned int idx_t = get_local_id(0); // thread id in work group
const unsigned int thread_id_in_warp = idx_t % warp_size; // thread id in warp (32 threads)
const unsigned int warp_id_in_group = idx_t / warp_size;
const unsigned int lmem_offset = warp_id_in_group * bs * bs; // each workgroup gets some lmem, but the workitems have to share it
// every workitem in a warp has the same lmem_offset
// for every row of L or every col of U
for (int row = idx_b; row < Nb; row+=num_groups) {
// Uij = (Aij - sum k=1 to i-1 {Lik*Ukj})
int jColStart = Ut_rows[row]; // actually colPointers to U
int jColEnd = Ut_rows[row + 1];
// for every block on this column
for (int ij = jColStart + warp_id_in_group; ij < jColEnd; ij+=warps_per_group) {
int rowU1 = Ut_cols[ij]; // actually rowIndices for U
// refine Uij element (or diagonal)
int i1 = LU_rows[rowU1];
int i2 = LU_rows[rowU1+1];
int kk = 0;
// LUmat->nnzValues[kk] is block Aij
for(kk = i1; kk < i2; ++kk) {
int c = LU_cols[kk];
if (c >= row) {
break;
}
}
// copy block Aij so operations can be done on it without affecting LUmat
if(thread_id_in_warp < bs*bs){
aij[lmem_offset+thread_id_in_warp] = LU_vals[kk*bs*bs + thread_id_in_warp];
}
int jk = L_rows[rowU1]; // points to row rowU1 in L
// if row rowU1 is empty: skip row. The whole warp looks at the same row, so no divergence
if (jk < L_rows[rowU1+1]) {
int colL = L_cols[jk];
// only check until block U(i,j) is reached
for (int k = jColStart; k < ij; ++k) {
int rowU2 = Ut_cols[k]; // actually rowIndices for U
while (colL < rowU2) {
++jk; // check next block on row rowU1 of L
colL = L_cols[jk];
}
if (colL == rowU2) {
// Aij -= (Lik * Ukj)
blockMultSub(aij+lmem_offset, L_vals + jk * bs * bs, Ut_vals + k * bs * bs);
}
}
}
// Uij_new = Aij - sum
// write result of this sweep
if(thread_id_in_warp < bs*bs){
Utmp[ij*bs*bs + thread_id_in_warp] = aij[lmem_offset + thread_id_in_warp];
}
}
// update L
// Lij = (Aij - sum k=1 to j-1 {Lik*Ukj}) / Ujj
int iRowStart = L_rows[row];
int iRowEnd = L_rows[row + 1];
for (int ij = iRowStart + warp_id_in_group; ij < iRowEnd; ij+=warps_per_group) {
int j = L_cols[ij];
// // refine Lij element
int i1 = LU_rows[row];
int i2 = LU_rows[row+1];
int kk = 0;
// LUmat->nnzValues[kk] is block Aij
for(kk = i1; kk < i2; ++kk) {
int c = LU_cols[kk];
if (c >= j) {
break;
}
}
// copy block Aij so operations can be done on it without affecting LUmat
if(thread_id_in_warp < bs*bs){
aij[lmem_offset+thread_id_in_warp] = LU_vals[kk*bs*bs + thread_id_in_warp];
}
int jk = Ut_rows[j]; // actually colPointers, jk points to col j in U
int rowU = Ut_cols[jk]; // actually rowIndices, rowU is the row of block jk
// only check until block L(i,j) is reached
for (int k = iRowStart; k < ij; ++k) {
int colL = L_cols[k];
while(rowU < colL) {
++jk; // check next block on col j of U
rowU = Ut_cols[jk];
}
if(rowU == colL) {
// Aij -= (Lik * Ukj)
blockMultSub(aij+lmem_offset, L_vals + k * bs * bs , Ut_vals + jk * bs * bs);
}
}
// calculate 1 / Ujj
invert(Ut_vals + (Ut_rows[j+1] - 1) * bs * bs, ujj+lmem_offset);
// Lij_new = (Aij - sum) / Ujj
// write result of this sweep
blockMult(aij+lmem_offset, ujj+lmem_offset, Ltmp + ij * bs * bs);
}
}
}
)";
#else
inline const char* chow_patel_ilu_sweep_s = R"(
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
// subtract blocks: a = a - b * c
// only one workitem performs this action
void blockMultSub(
__local double * restrict a,
__global const double * restrict b,
__global const double * restrict c)
{
const unsigned int block_size = 3;
for (unsigned int row = 0; row < block_size; row++) {
for (unsigned int col = 0; col < block_size; col++) {
double temp = 0.0;
for (unsigned int k = 0; k < block_size; k++) {
temp += b[block_size * row + k] * c[block_size * k + col];
}
a[block_size * row + col] -= temp;
}
}
}
// multiply blocks: resMat = mat1 * mat2
// only one workitem performs this action
void blockMult(
__local const double * restrict mat1,
__local const double * restrict mat2,
__global double * restrict resMat)
{
const unsigned int block_size = 3;
for (unsigned int row = 0; row < block_size; row++) {
for (unsigned int col = 0; col < block_size; col++) {
double temp = 0.0;
for (unsigned int k = 0; k < block_size; k++) {
temp += mat1[block_size * row + k] * mat2[block_size * k + col];
}
resMat[block_size * row + col] = temp;
}
}
}
// invert block: inverse = matrix^{-1}
// only one workitem performs this action
__kernel void inverter(
__global const double * restrict matrix,
__local double * restrict inverse)
{
// code generated by maple, copied from Dune::DenseMatrix
double t4 = matrix[0] * matrix[4];
double t6 = matrix[0] * matrix[5];
double t8 = matrix[1] * matrix[3];
double t10 = matrix[2] * matrix[3];
double t12 = matrix[1] * matrix[6];
double t14 = matrix[2] * matrix[6];
double det = (t4 * matrix[8] - t6 * matrix[7] - t8 * matrix[8] +
t10 * matrix[7] + t12 * matrix[5] - t14 * matrix[4]);
double t17 = 1.0 / det;
inverse[0] = (matrix[4] * matrix[8] - matrix[5] * matrix[7]) * t17;
inverse[1] = -(matrix[1] * matrix[8] - matrix[2] * matrix[7]) * t17;
inverse[2] = (matrix[1] * matrix[5] - matrix[2] * matrix[4]) * t17;
inverse[3] = -(matrix[3] * matrix[8] - matrix[5] * matrix[6]) * t17;
inverse[4] = (matrix[0] * matrix[8] - t14) * t17;
inverse[5] = -(t6 - t10) * t17;
inverse[6] = (matrix[3] * matrix[7] - matrix[4] * matrix[6]) * t17;
inverse[7] = -(matrix[0] * matrix[7] - t12) * t17;
inverse[8] = (t4 - t8) * t17;
}
// perform the fixed-point iteration
// all entries in L and U are updated once
// output is written to [LU]tmp
// aij and ujj are local arrays whose size is specified before kernel launch
__kernel void chow_patel_ilu_sweep(
__global const double * restrict Ut_vals,
__global const double * restrict L_vals,
__global const double * restrict LU_vals,
__global const int * restrict Ut_rows,
__global const int * restrict L_rows,
__global const int * restrict LU_rows,
__global const int * restrict Ut_cols,
__global const int * restrict L_cols,
__global const int * restrict LU_cols,
__global double * restrict Ltmp,
__global double * restrict Utmp,
const int Nb,
__local double *aij,
__local double *ujj)
{
const int bs = 3;
const unsigned int warp_size = 32;
const unsigned int work_group_size = get_local_size(0);
const unsigned int idx_b = get_global_id(0) / work_group_size;
const unsigned int num_groups = get_num_groups(0);
const unsigned int warps_per_group = work_group_size / warp_size;
const unsigned int idx_t = get_local_id(0); // thread id in work group
const unsigned int thread_id_in_warp = idx_t % warp_size; // thread id in warp (32 threads)
const unsigned int warp_id_in_group = idx_t / warp_size;
// for every row of L or every col of U
for (int row = idx_b; row < Nb; row+=num_groups) {
// Uij = (Aij - sum k=1 to i-1 {Lik*Ukj})
int jColStart = Ut_rows[row]; // actually colPointers to U
int jColEnd = Ut_rows[row + 1];
// for every block on this column
for (int ij = jColStart + idx_t; ij < jColEnd; ij+=work_group_size) {
int rowU1 = Ut_cols[ij]; // actually rowIndices for U
// refine Uij element (or diagonal)
int i1 = LU_rows[rowU1];
int i2 = LU_rows[rowU1+1];
int kk = 0;
// LUmat->nnzValues[kk] is block Aij
for(kk = i1; kk < i2; ++kk) {
int c = LU_cols[kk];
if (c >= row) {
break;
}
}
// copy block Aij so operations can be done on it without affecting LUmat
for(int z = 0; z < bs*bs; ++z){
aij[idx_t*bs*bs+z] = LU_vals[kk*bs*bs + z];
}
int jk = L_rows[rowU1];
// if row rowU1 is empty: do not sum. The workitems have different rowU1 values, divergence is possible
int colL = (jk < L_rows[rowU1+1]) ? L_cols[jk] : Nb;
// only check until block U(i,j) is reached
for (int k = jColStart; k < ij; ++k) {
int rowU2 = Ut_cols[k]; // actually rowIndices for U
while (colL < rowU2) {
++jk; // check next block on row rowU1 of L
colL = L_cols[jk];
}
if (colL == rowU2) {
// Aij -= (Lik * Ukj)
blockMultSub(aij+idx_t*bs*bs, L_vals + jk * bs * bs, Ut_vals + k * bs * bs);
}
}
// Uij_new = Aij - sum
// write result of this sweep
for(int z = 0; z < bs*bs; ++z){
Utmp[ij*bs*bs + z] = aij[idx_t*bs*bs+z];
}
}
// update L
// Lij = (Aij - sum k=1 to j-1 {Lik*Ukj}) / Ujj
int iRowStart = L_rows[row];
int iRowEnd = L_rows[row + 1];
for (int ij = iRowStart + idx_t; ij < iRowEnd; ij+=work_group_size) {
int j = L_cols[ij];
// // refine Lij element
int i1 = LU_rows[row];
int i2 = LU_rows[row+1];
int kk = 0;
// LUmat->nnzValues[kk] is block Aij
for(kk = i1; kk < i2; ++kk) {
int c = LU_cols[kk];
if (c >= j) {
break;
}
}
// copy block Aij so operations can be done on it without affecting LUmat
for(int z = 0; z < bs*bs; ++z){
aij[idx_t*bs*bs+z] = LU_vals[kk*bs*bs + z];
}
int jk = Ut_rows[j]; // actually colPointers, jk points to col j in U
int rowU = Ut_cols[jk]; // actually rowIndices, rowU is the row of block jk
// only check until block L(i,j) is reached
for (int k = iRowStart; k < ij; ++k) {
int colL = L_cols[k];
while(rowU < colL) {
++jk; // check next block on col j of U
rowU = Ut_cols[jk];
}
if(rowU == colL) {
// Aij -= (Lik * Ukj)
blockMultSub(aij+idx_t*bs*bs, L_vals + k * bs * bs , Ut_vals + jk * bs * bs);
}
}
// calculate 1 / ujj
inverter(Ut_vals + (Ut_rows[j+1] - 1) * bs * bs, ujj+idx_t*bs*bs);
// Lij_new = (Aij - sum) / Ujj
// write result of this sweep
blockMult(aij+idx_t*bs*bs, ujj+idx_t*bs*bs, Ltmp + ij * bs * bs);
}
}
}
)";
#endif
void ChowPatelIlu::decomposition(
cl::CommandQueue *queue, cl::Context *context,
int *Ut_ptrs, int *Ut_idxs, double *Ut_vals, int Ut_nnzbs,
int *L_rows, int *L_cols, double *L_vals, int L_nnzbs,
int *LU_rows, int *LU_cols, double *LU_vals, int LU_nnzbs,
int Nb, int num_sweeps, int verbosity)
{
const int block_size = 3;
try {
// just put everything in the capture list
std::call_once(initialize_flag, [&](){
cl::Program::Sources source(1, std::make_pair(chow_patel_ilu_sweep_s, strlen(chow_patel_ilu_sweep_s))); // what does this '1' mean? cl::Program::Sources is of type 'std::vector<std::pair<const char*, long unsigned int> >'
cl::Program program = cl::Program(*context, source, &err);
if (err != CL_SUCCESS) {
OPM_THROW(std::logic_error, "ChowPatelIlu OpenCL could not create Program");
}
std::vector<cl::Device> devices = context->getInfo<CL_CONTEXT_DEVICES>();
program.build(devices);
chow_patel_ilu_sweep_k.reset(new cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&,
cl::Buffer&, cl::Buffer&, cl::Buffer&,
cl::Buffer&, cl::Buffer&, cl::Buffer&,
cl::Buffer&, cl::Buffer&,
const int, cl::LocalSpaceArg, cl::LocalSpaceArg>(cl::Kernel(program, "chow_patel_ilu_sweep", &err)));
if (err != CL_SUCCESS) {
OPM_THROW(std::logic_error, "ChowPatelIlu OpenCL could not create Kernel");
}
// allocate GPU memory
d_Ut_vals = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * Ut_nnzbs * block_size * block_size);
d_L_vals = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * L_nnzbs * block_size * block_size);
d_LU_vals = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * LU_nnzbs * block_size * block_size);
d_Ut_ptrs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * (Nb+1));
d_L_rows = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * (Nb+1));
d_LU_rows = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * (Nb+1));
d_Ut_idxs = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * Ut_nnzbs);
d_L_cols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * L_nnzbs);
d_LU_cols = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(int) * LU_nnzbs);
d_Ltmp = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * L_nnzbs * block_size * block_size);
d_Utmp = cl::Buffer(*context, CL_MEM_READ_WRITE, sizeof(double) * Ut_nnzbs * block_size * block_size);
Dune::Timer t_copy_pattern;
events.resize(6);
err |= queue->enqueueWriteBuffer(d_Ut_ptrs, CL_FALSE, 0, sizeof(int) * (Nb+1), Ut_ptrs, nullptr, &events[0]);
err |= queue->enqueueWriteBuffer(d_L_rows, CL_FALSE, 0, sizeof(int) * (Nb+1), L_rows, nullptr, &events[1]);
err |= queue->enqueueWriteBuffer(d_LU_rows, CL_FALSE, 0, sizeof(int) * (Nb+1), LU_rows, nullptr, &events[2]);
err |= queue->enqueueWriteBuffer(d_Ut_idxs, CL_FALSE, 0, sizeof(int) * Ut_nnzbs, Ut_idxs, nullptr, &events[3]);
err |= queue->enqueueWriteBuffer(d_L_cols, CL_FALSE, 0, sizeof(int) * L_nnzbs, L_cols, nullptr, &events[4]);
err |= queue->enqueueWriteBuffer(d_LU_cols, CL_FALSE, 0, sizeof(int) * LU_nnzbs, LU_cols, nullptr, &events[5]);
cl::WaitForEvents(events);
events.clear();
if (verbosity >= 4){
std::ostringstream out;
out << "ChowPatelIlu copy sparsity pattern time: " << t_copy_pattern.stop() << " s";
OpmLog::info(out.str());
}
if (verbosity >= 2){
std::ostringstream out;
out << "ChowPatelIlu PARALLEL: " << PARALLEL;
OpmLog::info(out.str());
}
});
// copy to GPU
Dune::Timer t_copy1;
events.resize(3);
err = queue->enqueueWriteBuffer(d_Ut_vals, CL_FALSE, 0, sizeof(double) * Ut_nnzbs * block_size * block_size, Ut_vals, nullptr, &events[0]);
err |= queue->enqueueWriteBuffer(d_L_vals, CL_FALSE, 0, sizeof(double) * L_nnzbs * block_size * block_size, L_vals, nullptr, &events[1]);
err |= queue->enqueueWriteBuffer(d_LU_vals, CL_FALSE, 0, sizeof(double) * LU_nnzbs * block_size * block_size, LU_vals, nullptr, &events[2]);
cl::WaitForEvents(events);
events.clear();
if (verbosity >= 4){
std::ostringstream out;
out << "ChowPatelIlu copy1 time: " << t_copy1.stop() << " s";
OpmLog::info(out.str());
}
if (err != CL_SUCCESS) {
// enqueueWriteBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "ChowPatelIlu OpenCL enqueueWriteBuffer error");
}
// call kernel
for (int sweep = 0; sweep < num_sweeps; ++sweep) {
// normally, L_vals and Ltmp are swapped after the sweep is done
// these conditionals implement that without actually swapping pointers
// 1st sweep reads X_vals, writes to Xtmp
// 2nd sweep reads Xtmp, writes to X_vals
auto *Larg1 = (sweep % 2 == 0) ? &d_L_vals : &d_Ltmp;
auto *Larg2 = (sweep % 2 == 0) ? &d_Ltmp : &d_L_vals;
auto *Uarg1 = (sweep % 2 == 0) ? &d_Ut_vals : &d_Utmp;
auto *Uarg2 = (sweep % 2 == 0) ? &d_Utmp : &d_Ut_vals;
int num_work_groups = Nb;
#if PARALLEL
int work_group_size = 32;
#else
int work_group_size = 16;
#endif
int total_work_items = num_work_groups * work_group_size;
int lmem_per_work_group = work_group_size * block_size * block_size * sizeof(double);
Dune::Timer t_kernel;
event = (*chow_patel_ilu_sweep_k)(cl::EnqueueArgs(*queue, cl::NDRange(total_work_items), cl::NDRange(work_group_size)),
*Uarg1, *Larg1, d_LU_vals,
d_Ut_ptrs, d_L_rows, d_LU_rows,
d_Ut_idxs, d_L_cols, d_LU_cols,
*Larg2, *Uarg2, Nb, cl::Local(lmem_per_work_group), cl::Local(lmem_per_work_group));
event.wait();
if (verbosity >= 4){
std::ostringstream out;
out << "ChowPatelIlu sweep kernel time: " << t_kernel.stop() << " s";
OpmLog::info(out.str());
}
}
// copy back
Dune::Timer t_copy2;
events.resize(2);
if (num_sweeps % 2 == 0) {
err = queue->enqueueReadBuffer(d_Ut_vals, CL_FALSE, 0, sizeof(double) * Ut_nnzbs * block_size * block_size, Ut_vals, nullptr, &events[0]);
err |= queue->enqueueReadBuffer(d_L_vals, CL_FALSE, 0, sizeof(double) * L_nnzbs * block_size * block_size, L_vals, nullptr, &events[1]);
} else {
err = queue->enqueueReadBuffer(d_Utmp, CL_FALSE, 0, sizeof(double) * Ut_nnzbs * block_size * block_size, Ut_vals, nullptr, &events[0]);
err |= queue->enqueueReadBuffer(d_Ltmp, CL_FALSE, 0, sizeof(double) * L_nnzbs * block_size * block_size, L_vals, nullptr, &events[1]);
}
cl::WaitForEvents(events);
events.clear();
if (verbosity >= 4){
std::ostringstream out;
out << "ChowPatelIlu copy2 time: " << t_copy2.stop() << " s";
OpmLog::info(out.str());
}
if (err != CL_SUCCESS) {
// enqueueReadBuffer is C and does not throw exceptions like C++ OpenCL
OPM_THROW(std::logic_error, "ChowPatelIlu OpenCL enqueueReadBuffer error");
}
} catch (const cl::Error& error) {
std::ostringstream oss;
oss << "OpenCL Error: " << error.what() << "(" << error.err() << ")\n";
oss << getErrorString(error.err()) << std::endl;
// rethrow exception
OPM_THROW(std::logic_error, oss.str());
} catch (const std::logic_error& error) {
// rethrow exception by OPM_THROW in the try{}
throw error;
}
}
} // end namespace bda