mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-23 16:00:01 -06:00
47b933a58e
it is not used anymore. A lot of related implementation has been moved to WellTestState. Its existence makes some logic rather confusing and some new development not easy.
242 lines
9.5 KiB
C++
242 lines
9.5 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <config.h>
|
|
|
|
#define BOOST_TEST_MODULE WellModelTest
|
|
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/filesystem.hpp>
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
#include <opm/parser/eclipse/Parser/Parser.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleEnums.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
|
|
|
|
#include <opm/grid/UnstructuredGrid.h>
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
#include <opm/core/wells/WellsManager.hpp>
|
|
#include <opm/core/wells.h>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
|
|
#include <opm/grid/GridHelpers.hpp>
|
|
#include <opm/autodiff/FlowMainEbos.hpp>
|
|
#include <opm/autodiff/BlackoilModelEbos.hpp>
|
|
#include <opm/autodiff/createGlobalCellArray.hpp>
|
|
#include <opm/autodiff/GridInit.hpp>
|
|
|
|
#include <ebos/eclproblem.hh>
|
|
#include <ewoms/common/start.hh>
|
|
|
|
#include <opm/autodiff/StandardWell.hpp>
|
|
#include <opm/autodiff/BlackoilWellModel.hpp>
|
|
|
|
#if HAVE_DUNE_FEM
|
|
#include <dune/fem/misc/mpimanager.hh>
|
|
#else
|
|
#include <dune/common/parallel/mpihelper.hh>
|
|
#endif
|
|
|
|
using StandardWell = Opm::StandardWell<TTAG(EclFlowProblem)>;
|
|
|
|
struct SetupTest {
|
|
|
|
using Grid = UnstructuredGrid;
|
|
using GridInit = Opm::GridInit<Grid>;
|
|
|
|
SetupTest ()
|
|
{
|
|
Opm::Parser parser;
|
|
auto deck = parser.parseFile("TESTWELLMODEL.DATA");
|
|
ecl_state.reset(new Opm::EclipseState(deck) );
|
|
{
|
|
const Opm::TableManager table ( deck );
|
|
const Opm::Eclipse3DProperties eclipseProperties ( deck , table, ecl_state->getInputGrid());
|
|
const Opm::Runspec runspec (deck);
|
|
schedule.reset( new Opm::Schedule(deck, ecl_state->getInputGrid(), eclipseProperties, runspec));
|
|
}
|
|
|
|
// Create grid.
|
|
const std::vector<double>& porv =
|
|
ecl_state->get3DProperties().getDoubleGridProperty("PORV").getData();
|
|
|
|
std::unique_ptr<GridInit> grid_init(new GridInit(*ecl_state, porv));
|
|
const Grid& grid = grid_init->grid();
|
|
|
|
// Create material law manager.
|
|
std::vector<int> compressed_to_cartesianIdx;
|
|
Opm::createGlobalCellArray(grid, compressed_to_cartesianIdx);
|
|
|
|
current_timestep = 0;
|
|
|
|
// Create wells.
|
|
wells_manager.reset(new Opm::WellsManager(*ecl_state,
|
|
*schedule,
|
|
current_timestep,
|
|
Opm::UgGridHelpers::numCells(grid),
|
|
Opm::UgGridHelpers::globalCell(grid),
|
|
Opm::UgGridHelpers::cartDims(grid),
|
|
Opm::UgGridHelpers::dimensions(grid),
|
|
Opm::UgGridHelpers::cell2Faces(grid),
|
|
Opm::UgGridHelpers::beginFaceCentroids(grid),
|
|
false,
|
|
std::unordered_set<std::string>() ) );
|
|
|
|
};
|
|
|
|
std::unique_ptr<const Opm::WellsManager> wells_manager;
|
|
std::unique_ptr<const Opm::EclipseState> ecl_state;
|
|
std::unique_ptr<const Opm::Schedule> schedule;
|
|
int current_timestep;
|
|
};
|
|
|
|
struct GlobalFixture {
|
|
GlobalFixture()
|
|
{
|
|
int argcDummy = 1;
|
|
const char *tmp[] = {"test_wellmodel"};
|
|
char **argvDummy = const_cast<char**>(tmp);
|
|
|
|
// MPI setup.
|
|
#if HAVE_DUNE_FEM
|
|
Dune::Fem::MPIManager::initialize(argcDummy, argvDummy);
|
|
#else
|
|
Dune::MPIHelper::instance(argcDummy, argvDummy);
|
|
#endif
|
|
|
|
Opm::FlowMainEbos<TTAG(EclFlowProblem)>::setupParameters_(argcDummy, argvDummy);
|
|
}
|
|
};
|
|
|
|
BOOST_GLOBAL_FIXTURE(GlobalFixture);
|
|
|
|
BOOST_AUTO_TEST_CASE(TestStandardWellInput) {
|
|
const SetupTest setup_test;
|
|
const Wells* wells = setup_test.wells_manager->c_wells();
|
|
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
|
|
BOOST_CHECK_EQUAL( wells_ecl.size(), 2);
|
|
const Opm::Well* well = wells_ecl[1];
|
|
const Opm::BlackoilModelParametersEbos<TTAG(EclFlowProblem) > param;
|
|
|
|
// For the conversion between the surface volume rate and resrevoir voidage rate
|
|
typedef Opm::BlackOilFluidSystem<double> FluidSystem;
|
|
using RateConverterType = Opm::RateConverter::
|
|
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
|
|
// Compute reservoir volumes for RESV controls.
|
|
Opm::PhaseUsage phaseUsage;
|
|
std::unique_ptr<RateConverterType> rateConverter;
|
|
// Compute reservoir volumes for RESV controls.
|
|
rateConverter.reset(new RateConverterType (phaseUsage,
|
|
std::vector<int>(10, 0)));
|
|
|
|
const int pvtIdx = 0;
|
|
const int num_comp = wells->number_of_phases;
|
|
|
|
BOOST_CHECK_THROW( StandardWell( well, -1, wells, param, *rateConverter, pvtIdx, num_comp), std::invalid_argument);
|
|
BOOST_CHECK_THROW( StandardWell( nullptr, 4, wells , param, *rateConverter, pvtIdx, num_comp), std::invalid_argument);
|
|
BOOST_CHECK_THROW( StandardWell( well, 4, nullptr , param, *rateConverter, pvtIdx, num_comp), std::invalid_argument);
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(TestBehavoir) {
|
|
const SetupTest setup_test;
|
|
const Wells* wells_struct = setup_test.wells_manager->c_wells();
|
|
const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
|
|
const int current_timestep = setup_test.current_timestep;
|
|
std::vector<std::unique_ptr<const StandardWell> > wells;
|
|
|
|
{
|
|
const int nw = wells_struct ? (wells_struct->number_of_wells) : 0;
|
|
const Opm::BlackoilModelParametersEbos<TTAG(EclFlowProblem)> param;
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string well_name(wells_struct->name[w]);
|
|
|
|
size_t index_well = 0;
|
|
for (; index_well < wells_ecl.size(); ++index_well) {
|
|
if (well_name == wells_ecl[index_well]->name()) {
|
|
break;
|
|
}
|
|
}
|
|
// we should always be able to find the well in wells_ecl
|
|
BOOST_CHECK(index_well != wells_ecl.size());
|
|
// For the conversion between the surface volume rate and resrevoir voidage rate
|
|
typedef Opm::BlackOilFluidSystem<double> FluidSystem;
|
|
using RateConverterType = Opm::RateConverter::
|
|
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
|
|
// Compute reservoir volumes for RESV controls.
|
|
// TODO: not sure why for this class the initlizer list does not work
|
|
// otherwise we should make a meaningful const PhaseUsage here.
|
|
Opm::PhaseUsage phaseUsage;
|
|
std::unique_ptr<RateConverterType> rateConverter;
|
|
// Compute reservoir volumes for RESV controls.
|
|
rateConverter.reset(new RateConverterType (phaseUsage,
|
|
std::vector<int>(10, 0)));
|
|
|
|
const int pvtIdx = 0;
|
|
const int num_comp = wells_struct->number_of_phases;
|
|
|
|
wells.emplace_back(new StandardWell(wells_ecl[index_well], current_timestep, wells_struct, param, *rateConverter, pvtIdx, num_comp) );
|
|
}
|
|
}
|
|
|
|
// first well, it is a production well from the deck
|
|
{
|
|
const auto& well = wells[0];
|
|
BOOST_CHECK_EQUAL(well->name(), "PROD1");
|
|
BOOST_CHECK(well->wellType() == PRODUCER);
|
|
BOOST_CHECK(well->numEq == 3);
|
|
BOOST_CHECK(well->numWellEq == 4);
|
|
const auto& wc = well->wellControls();
|
|
const int ctrl_num = well_controls_get_num(wc);
|
|
BOOST_CHECK(ctrl_num > 0);
|
|
const auto& control = well_controls_get_current(wc);
|
|
BOOST_CHECK(control >= 0);
|
|
// GAS RATE CONTROL
|
|
const auto& distr = well_controls_iget_distr(wc, control);
|
|
BOOST_CHECK(distr[0] == 0.);
|
|
BOOST_CHECK(distr[1] == 0.);
|
|
BOOST_CHECK(distr[2] == 1.);
|
|
}
|
|
|
|
// second well, it is the injection well from the deck
|
|
{
|
|
const auto& well = wells[1];
|
|
BOOST_CHECK_EQUAL(well->name(), "INJE1");
|
|
BOOST_CHECK(well->wellType() == INJECTOR);
|
|
BOOST_CHECK(well->numEq == 3);
|
|
BOOST_CHECK(well->numWellEq == 4);
|
|
const auto& wc = well->wellControls();
|
|
const int ctrl_num = well_controls_get_num(wc);
|
|
BOOST_CHECK(ctrl_num > 0);
|
|
const auto& control = well_controls_get_current(wc);
|
|
BOOST_CHECK(control >= 0);
|
|
// WATER RATE CONTROL
|
|
const auto& distr = well_controls_iget_distr(wc, control);
|
|
BOOST_CHECK(distr[0] == 1.);
|
|
BOOST_CHECK(distr[1] == 0.);
|
|
BOOST_CHECK(distr[2] == 0.);
|
|
}
|
|
}
|