mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-01 12:06:54 -06:00
196 lines
7.4 KiB
C++
196 lines
7.4 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <opm/simulators/wells/VFPProdProperties.hpp>
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/VFPProdTable.hpp>
|
|
|
|
#include <opm/simulators/wells/VFPHelpers.hpp>
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
|
|
|
|
|
double VFPProdProperties::thp(int table_id,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& bhp_arg,
|
|
const double& alq) const {
|
|
const VFPProdTable& table = detail::getTable(m_tables, table_id);
|
|
|
|
// Find interpolation variables.
|
|
double flo = 0.0;
|
|
double wfr = 0.0;
|
|
double gfr = 0.0;
|
|
if (aqua == 0.0 && liquid == 0.0 && vapour == 0.0) {
|
|
// All zero, likely at initial state.
|
|
// Set FLO variable to minimum to avoid extrapolation.
|
|
// The water and gas fractions are kept at 0.0.
|
|
flo = table.getFloAxis().front();
|
|
} else {
|
|
// The usual case.
|
|
// Recall that production rate is negative in Opm, so switch the sign.
|
|
flo = -detail::getFlo(table, aqua, liquid, vapour);
|
|
wfr = detail::getWFR(table, aqua, liquid, vapour);
|
|
gfr = detail::getGFR(table, aqua, liquid, vapour);
|
|
}
|
|
|
|
const std::vector<double> thp_array = table.getTHPAxis();
|
|
int nthp = thp_array.size();
|
|
|
|
/**
|
|
* Find the function bhp_array(thp) by creating a 1D view of the data
|
|
* by interpolating for every value of thp. This might be somewhat
|
|
* expensive, but let us assome that nthp is small.
|
|
*/
|
|
auto flo_i = detail::findInterpData( flo, table.getFloAxis());
|
|
auto wfr_i = detail::findInterpData( wfr, table.getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr, table.getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq, table.getALQAxis());
|
|
std::vector<double> bhp_array(nthp);
|
|
for (int i=0; i<nthp; ++i) {
|
|
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
|
|
bhp_array[i] = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
|
|
}
|
|
|
|
double retval = detail::findTHP(bhp_array, thp_array, bhp_arg);
|
|
return retval;
|
|
}
|
|
|
|
|
|
double VFPProdProperties::bhp(int table_id,
|
|
const double& aqua,
|
|
const double& liquid,
|
|
const double& vapour,
|
|
const double& thp_arg,
|
|
const double& alq) const {
|
|
const VFPProdTable& table = detail::getTable(m_tables, table_id);
|
|
|
|
detail::VFPEvaluation retval = detail::bhp(table, aqua, liquid, vapour, thp_arg, alq);
|
|
return retval.value;
|
|
}
|
|
|
|
|
|
const VFPProdTable& VFPProdProperties::getTable(const int table_id) const {
|
|
return detail::getTable(m_tables, table_id);
|
|
}
|
|
|
|
bool VFPProdProperties::hasTable(const int table_id) const {
|
|
return detail::hasTable(m_tables, table_id);
|
|
}
|
|
|
|
|
|
std::vector<double>
|
|
VFPProdProperties::
|
|
bhpwithflo(const std::vector<double>& flos,
|
|
const int table_id,
|
|
const double wfr,
|
|
const double gfr,
|
|
const double thp,
|
|
const double alq,
|
|
const double dp) const
|
|
{
|
|
// Get the table
|
|
const VFPProdTable& table = detail::getTable(m_tables, table_id);
|
|
const auto thp_i = detail::findInterpData( thp, table.getTHPAxis()); // assume constant
|
|
const auto wfr_i = detail::findInterpData( wfr, table.getWFRAxis());
|
|
const auto gfr_i = detail::findInterpData( gfr, table.getGFRAxis());
|
|
const auto alq_i = detail::findInterpData( alq, table.getALQAxis()); //assume constant
|
|
|
|
std::vector<double> bhps(flos.size(), 0.);
|
|
for (size_t i = 0; i < flos.size(); ++i) {
|
|
// Value of FLO is negative in OPM for producers, but positive in VFP table
|
|
const auto flo_i = detail::findInterpData(-flos[i], table.getFloAxis());
|
|
const detail::VFPEvaluation bhp_val = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
|
|
// TODO: this kind of breaks the conventions for the functions here by putting dp within the function
|
|
bhps[i] = bhp_val.value - dp;
|
|
}
|
|
|
|
return bhps;
|
|
}
|
|
|
|
|
|
void VFPProdProperties::addTable(const VFPProdTable& new_table) {
|
|
this->m_tables.emplace( new_table.getTableNum(), new_table );
|
|
}
|
|
|
|
template <class EvalWell>
|
|
EvalWell VFPProdProperties::bhp(const int table_id,
|
|
const EvalWell& aqua,
|
|
const EvalWell& liquid,
|
|
const EvalWell& vapour,
|
|
const double& thp,
|
|
const double& alq) const
|
|
{
|
|
//Get the table
|
|
const VFPProdTable& table = detail::getTable(m_tables, table_id);
|
|
EvalWell bhp = 0.0 * aqua;
|
|
|
|
//Find interpolation variables
|
|
EvalWell flo = detail::getFlo(table, aqua, liquid, vapour);
|
|
EvalWell wfr = detail::getWFR(table, aqua, liquid, vapour);
|
|
EvalWell gfr = detail::getGFR(table, aqua, liquid, vapour);
|
|
|
|
//First, find the values to interpolate between
|
|
//Value of FLO is negative in OPM for producers, but positive in VFP table
|
|
auto flo_i = detail::findInterpData(-flo.value(), table.getFloAxis());
|
|
auto thp_i = detail::findInterpData( thp, table.getTHPAxis()); // assume constant
|
|
auto wfr_i = detail::findInterpData( wfr.value(), table.getWFRAxis());
|
|
auto gfr_i = detail::findInterpData( gfr.value(), table.getGFRAxis());
|
|
auto alq_i = detail::findInterpData( alq, table.getALQAxis()); //assume constant
|
|
|
|
detail::VFPEvaluation bhp_val = detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
|
|
|
|
bhp = (bhp_val.dwfr * wfr) + (bhp_val.dgfr * gfr) - (std::max(0.0, bhp_val.dflo) * flo);
|
|
|
|
bhp.setValue(bhp_val.value);
|
|
return bhp;
|
|
}
|
|
|
|
#define INSTANCE(...) \
|
|
template __VA_ARGS__ VFPProdProperties::bhp<__VA_ARGS__>(const int, \
|
|
const __VA_ARGS__&, const __VA_ARGS__&, const __VA_ARGS__&, \
|
|
const double&, const double&) const;
|
|
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 4u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 5u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 6u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 7u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 8u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 9u>)
|
|
INSTANCE(DenseAd::Evaluation<double, -1, 10u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 3, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 4, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 5, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 6, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 7, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 8, 0u>)
|
|
INSTANCE(DenseAd::Evaluation<double, 9, 0u>)
|
|
|
|
}
|