mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-11 00:41:56 -06:00
7ca6e2a25e
removed obsolete comment
803 lines
21 KiB
C++
803 lines
21 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \brief Auxiliary routines that to solve the ODEs that emerge from the hydrostatic
|
|
* equilibrium problem
|
|
*/
|
|
#ifndef EWOMS_EQUILIBRATIONHELPERS_HH
|
|
#define EWOMS_EQUILIBRATIONHELPERS_HH
|
|
|
|
#include <opm/material/common/Tabulated1DFunction.hpp>
|
|
|
|
#include <opm/input/eclipse/EclipseState/InitConfig/Equil.hpp>
|
|
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
/*
|
|
---- synopsis of EquilibrationHelpers.hpp ----
|
|
|
|
namespace Opm
|
|
{
|
|
namespace EQUIL {
|
|
|
|
namespace Miscibility {
|
|
class RsFunction;
|
|
class NoMixing;
|
|
template <class FluidSystem>
|
|
class RsVD;
|
|
template <class FluidSystem>
|
|
class RsSatAtContact;
|
|
}
|
|
|
|
class EquilReg;
|
|
|
|
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
struct PcEq;
|
|
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double satFromPc(const MaterialLawManager& materialLawManager,
|
|
const int phase,
|
|
const int cell,
|
|
const double targetPc,
|
|
const bool increasing = false)
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double satFromSumOfPcs(const MaterialLawManager& materialLawManager,
|
|
const int phase1,
|
|
const int phase2,
|
|
const int cell,
|
|
const double targetPc)
|
|
} // namespace Equil
|
|
} // namespace Opm
|
|
|
|
---- end of synopsis of EquilibrationHelpers.hpp ----
|
|
*/
|
|
|
|
namespace Opm {
|
|
|
|
/**
|
|
* Types and routines that collectively implement a basic
|
|
* ECLIPSE-style equilibration-based initialisation scheme.
|
|
*
|
|
* This namespace is intentionally nested to avoid name clashes
|
|
* with other parts of OPM.
|
|
*/
|
|
namespace EQUIL {
|
|
|
|
/**
|
|
* Types and routines relating to phase mixing in
|
|
* equilibration calculations.
|
|
*/
|
|
namespace Miscibility {
|
|
|
|
/**
|
|
* Base class for phase mixing functions.
|
|
*/
|
|
class RsFunction
|
|
{
|
|
public:
|
|
virtual ~RsFunction() = default;
|
|
|
|
/**
|
|
* Function call operator.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
virtual double operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double sat = 0.0) const = 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "no phase mixing" policy.
|
|
*/
|
|
class NoMixing : public RsFunction
|
|
{
|
|
public:
|
|
virtual ~NoMixing() = default;
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press. In "no mixing
|
|
* policy", this is identically zero.
|
|
*/
|
|
double
|
|
operator()(const double /* depth */,
|
|
const double /* press */,
|
|
const double /* temp */,
|
|
const double /* sat */ = 0.0) const
|
|
{
|
|
return 0.0;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "dissolved gas-oil ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* typically taken from keyword 'RSVD'.
|
|
*/
|
|
template <class FluidSystem>
|
|
class RsVD : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] rs Dissolved gas-oil ratio at @c depth.
|
|
*/
|
|
RsVD(const int pvtRegionIdx,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& rs);
|
|
|
|
virtual ~RsVD() = default;
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double satGas = 0.0) const;
|
|
|
|
private:
|
|
using RsVsDepthFunc = Tabulated1DFunction<double>;
|
|
|
|
const int pvtRegionIdx_;
|
|
RsVsDepthFunc rsVsDepth_;
|
|
|
|
double satRs(const double press, const double temp) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "dissolved gas-oil ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* typically from keyword 'PBVD'.
|
|
*/
|
|
template <class FluidSystem>
|
|
class PBVD : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] pbub Bubble-point pressure at @c depth.
|
|
*/
|
|
PBVD(const int pvtRegionIdx,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& pbub);
|
|
|
|
virtual ~PBVD() = default;
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] Pressure in the cell
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double depth,
|
|
const double cellPress,
|
|
const double temp,
|
|
const double satGas = 0.0) const;
|
|
|
|
private:
|
|
using PbubVsDepthFunc = Tabulated1DFunction<double>;
|
|
|
|
const int pvtRegionIdx_;
|
|
PbubVsDepthFunc pbubVsDepth_;
|
|
|
|
double satRs(const double press, const double temp) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "vaporized oil-gas ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* taken from keyword 'PDVD'.
|
|
*/
|
|
template <class FluidSystem>
|
|
class PDVD : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] pbub Dew-point pressure at @c depth.
|
|
*/
|
|
PDVD(const int pvtRegionIdx,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& pdew);
|
|
|
|
virtual ~PDVD() = default;
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] cellPress Pressure in the cell
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RV
|
|
* value.
|
|
*
|
|
* \return Vaporized oil-gas ratio (RV) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double depth,
|
|
const double cellPress,
|
|
const double temp,
|
|
const double satOil = 0.0) const;
|
|
|
|
private:
|
|
using PdewVsDepthFunc = Tabulated1DFunction<double>;
|
|
|
|
const int pvtRegionIdx_;
|
|
PdewVsDepthFunc pdewVsDepth_;
|
|
|
|
double satRv(const double press, const double temp) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "vaporized oil-gas ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* typically taken from keyword 'RVVD'.
|
|
*/
|
|
template <class FluidSystem>
|
|
class RvVD : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] rv Dissolved gas-oil ratio at @c depth.
|
|
*/
|
|
RvVD(const int pvtRegionIdx,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& rv);
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RV
|
|
* value.
|
|
*
|
|
* \return Vaporized oil-gas ratio (RV) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double satOil = 0.0) const;
|
|
|
|
private:
|
|
using RvVsDepthFunc = Tabulated1DFunction<double>;
|
|
|
|
const int pvtRegionIdx_;
|
|
RvVsDepthFunc rvVsDepth_;
|
|
|
|
double satRv(const double press, const double temp) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "vaporized water-gas ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* typically taken from keyword 'RVWVD'.
|
|
*/
|
|
template <class FluidSystem>
|
|
class RvwVD : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] rvw Evaporized water-gasl ratio at @c depth.
|
|
*/
|
|
RvwVD(const int pvtRegionIdx,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& rvw);
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RVW
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RVW
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RVW
|
|
* value.
|
|
*
|
|
* \return Vaporized water-gas ratio (RVW) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double satWat = 0.0) const;
|
|
|
|
private:
|
|
using RvwVsDepthFunc = Tabulated1DFunction<double>;
|
|
|
|
const int pvtRegionIdx_;
|
|
RvwVsDepthFunc rvwVsDepth_;
|
|
|
|
double satRvw(const double press, const double temp) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Class that implements "dissolved gas-oil ratio" (Rs)
|
|
* as function of depth and pressure as follows:
|
|
*
|
|
* 1. The Rs at the gas-oil contact is equal to the
|
|
* saturated Rs value, RsSatContact.
|
|
*
|
|
* 2. The Rs elsewhere is equal to RsSatContact, but
|
|
* constrained to the saturated value as given by the
|
|
* local pressure.
|
|
*
|
|
* This should yield Rs-values that are constant below the
|
|
* contact, and decreasing above the contact.
|
|
*/
|
|
template <class FluidSystem>
|
|
class RsSatAtContact : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] pContact oil pressure at the contact
|
|
* \param[in] T_contact temperature at the contact
|
|
*/
|
|
RsSatAtContact(const int pvtRegionIdx, const double pContact, const double T_contact);
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double /* depth */,
|
|
const double press,
|
|
const double temp,
|
|
const double satGas = 0.0) const;
|
|
|
|
private:
|
|
const int pvtRegionIdx_;
|
|
double rsSatContact_;
|
|
|
|
double satRs(const double press, const double temp) const;
|
|
};
|
|
|
|
|
|
/**
|
|
* Class that implements "vaporized oil-gas ratio" (Rv)
|
|
* as function of depth and pressure as follows:
|
|
*
|
|
* 1. The Rv at the gas-oil contact is equal to the
|
|
* saturated Rv value, RvSatContact.
|
|
*
|
|
* 2. The Rv elsewhere is equal to RvSatContact, but
|
|
* constrained to the saturated value as given by the
|
|
* local pressure.
|
|
*
|
|
* This should yield Rv-values that are constant below the
|
|
* contact, and decreasing above the contact.
|
|
*/
|
|
template <class FluidSystem>
|
|
class RvSatAtContact : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] pContact oil pressure at the contact
|
|
* \param[in] T_contact temperature at the contact
|
|
*/
|
|
RvSatAtContact(const int pvtRegionIdx, const double pContact, const double T_contact);
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RV
|
|
* value.
|
|
*
|
|
* \return Dissolved oil-gas ratio (RV) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double /*depth*/,
|
|
const double press,
|
|
const double temp,
|
|
const double satOil = 0.0) const;
|
|
|
|
private:
|
|
const int pvtRegionIdx_;
|
|
double rvSatContact_;
|
|
|
|
double satRv(const double press, const double temp) const;
|
|
};
|
|
|
|
/**
|
|
* Class that implements "vaporized water-gas ratio" (Rvw)
|
|
* as function of depth and pressure as follows:
|
|
*
|
|
* 1. The Rvw at the gas-water contact is equal to the
|
|
* saturated Rv value, RvwSatContact.
|
|
*
|
|
* 2. The Rvw elsewhere is equal to RvwSatContact, but
|
|
* constrained to the saturated value as given by the
|
|
* local pressure.
|
|
*
|
|
* This should yield Rvw-values that are constant below the
|
|
* contact, and decreasing above the contact.
|
|
*/
|
|
template <class FluidSystem>
|
|
class RvwSatAtContact : public RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
* \param[in] pContact oil pressure at the contact
|
|
* \param[in] T_contact temperature at the contact
|
|
*/
|
|
RvwSatAtContact(const int pvtRegionIdx, const double pContact, const double T_contact);
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RVW
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RVW
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RVW
|
|
* value.
|
|
*
|
|
* \return Dissolved water-gas ratio (RVW) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double operator()(const double /*depth*/,
|
|
const double press,
|
|
const double temp,
|
|
const double satWat = 0.0) const;
|
|
|
|
private:
|
|
const int pvtRegionIdx_;
|
|
double rvwSatContact_;
|
|
|
|
double satRvw(const double press, const double temp) const;
|
|
};
|
|
|
|
} // namespace Miscibility
|
|
|
|
/**
|
|
* Aggregate information base of an equilibration region.
|
|
*
|
|
* Provides inquiry methods for retrieving depths of contacs
|
|
* and pressure values as well as a means of calculating fluid
|
|
* densities, dissolved gas-oil ratio and vapourised oil-gas
|
|
* ratios.
|
|
*
|
|
* \tparam DensCalc Type that provides access to a phase
|
|
* density calculation facility. Must implement an operator()
|
|
* declared as
|
|
* <CODE>
|
|
* std::vector<double>
|
|
* operator()(const double press,
|
|
* const std::vector<double>& svol)
|
|
* </CODE>
|
|
* that calculates the phase densities of all phases in @c
|
|
* svol at fluid pressure @c press.
|
|
*/
|
|
class EquilReg
|
|
{
|
|
using TabulatedFunction = Tabulated1DFunction<double>;
|
|
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] rec Equilibration data of current region.
|
|
* \param[in] rs Calculator of dissolved gas-oil ratio.
|
|
* \param[in] rv Calculator of vapourised oil-gas ratio.
|
|
* \param[in] rvw Calculator of vapourised water-gas ratio.
|
|
* \param[in] pvtRegionIdx The pvt region index
|
|
*/
|
|
EquilReg(const EquilRecord& rec,
|
|
std::shared_ptr<Miscibility::RsFunction> rs,
|
|
std::shared_ptr<Miscibility::RsFunction> rv,
|
|
std::shared_ptr<Miscibility::RsFunction> rvw,
|
|
const TabulatedFunction& saltVdTable,
|
|
const int pvtIdx);
|
|
|
|
/**
|
|
* Type of dissolved gas-oil ratio calculator.
|
|
*/
|
|
using CalcDissolution = Miscibility::RsFunction;
|
|
|
|
/**
|
|
* Type of vapourised oil-gas ratio calculator.
|
|
*/
|
|
using CalcEvaporation = Miscibility::RsFunction;
|
|
|
|
/**
|
|
* Type of vapourised water-gas ratio calculator.
|
|
*/
|
|
using CalcWaterEvaporation = Miscibility::RsFunction;
|
|
|
|
|
|
/**
|
|
* Datum depth in current region
|
|
*/
|
|
double datum() const;
|
|
|
|
/**
|
|
* Pressure at datum depth in current region.
|
|
*/
|
|
double pressure() const;
|
|
|
|
/**
|
|
* Depth of water-oil contact.
|
|
*/
|
|
double zwoc() const;
|
|
|
|
/**
|
|
* water-oil capillary pressure at water-oil contact.
|
|
*
|
|
* \return P_o - P_w at WOC.
|
|
*/
|
|
double pcowWoc() const;
|
|
|
|
/**
|
|
* Depth of gas-oil contact.
|
|
*/
|
|
double zgoc() const;
|
|
|
|
/**
|
|
* Gas-oil capillary pressure at gas-oil contact.
|
|
*
|
|
* \return P_g - P_o at GOC.
|
|
*/
|
|
double pcgoGoc() const;
|
|
|
|
/**
|
|
* Accuracy/strategy for initial fluid-in-place calculation.
|
|
*
|
|
* \return zero (N=0) for centre-point method, negative (N<0) for the
|
|
* horizontal subdivision method with 2*(-N) intervals, and positive
|
|
* (N>0) for the tilted subdivision method with 2*N intervals.
|
|
*/
|
|
int equilibrationAccuracy() const;
|
|
|
|
/**
|
|
* Retrieve dissolved gas-oil ratio calculator of current
|
|
* region.
|
|
*/
|
|
const CalcDissolution& dissolutionCalculator() const;
|
|
|
|
/**
|
|
* Retrieve vapourised oil-gas ratio calculator of current
|
|
* region.
|
|
*/
|
|
const CalcEvaporation& evaporationCalculator() const;
|
|
|
|
/**
|
|
* Retrieve vapourised water-gas ratio calculator of current
|
|
* region.
|
|
*/
|
|
const CalcWaterEvaporation& waterEvaporationCalculator() const;
|
|
|
|
const TabulatedFunction& saltVdTable() const;
|
|
/**
|
|
* Retrieve pvtIdx of the region.
|
|
*/
|
|
int pvtIdx() const;
|
|
|
|
private:
|
|
EquilRecord rec_; /**< Equilibration data */
|
|
std::shared_ptr<Miscibility::RsFunction> rs_; /**< RS calculator */
|
|
std::shared_ptr<Miscibility::RsFunction> rv_; /**< RV calculator */
|
|
std::shared_ptr<Miscibility::RsFunction> rvw_; /**< RVW calculator */
|
|
const TabulatedFunction& saltVdTable_;
|
|
const int pvtIdx_;
|
|
};
|
|
|
|
|
|
|
|
/// Functor for inverting capillary pressure function.
|
|
/// Function represented is
|
|
/// f(s) = pc(s) - targetPc
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
struct PcEq
|
|
{
|
|
PcEq(const MaterialLawManager& materialLawManager,
|
|
const int phase,
|
|
const int cell,
|
|
const double targetPc);
|
|
|
|
double operator()(double s) const;
|
|
|
|
private:
|
|
const MaterialLawManager& materialLawManager_;
|
|
const int phase_;
|
|
const int cell_;
|
|
const double targetPc_;
|
|
};
|
|
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double minSaturations(const MaterialLawManager& materialLawManager,
|
|
const int phase, const int cell);
|
|
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double maxSaturations(const MaterialLawManager& materialLawManager,
|
|
const int phase, const int cell);
|
|
|
|
/// Compute saturation of some phase corresponding to a given
|
|
/// capillary pressure.
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double satFromPc(const MaterialLawManager& materialLawManager,
|
|
const int phase,
|
|
const int cell,
|
|
const double targetPc,
|
|
const bool increasing = false);
|
|
|
|
/// Functor for inverting a sum of capillary pressure functions.
|
|
/// Function represented is
|
|
/// f(s) = pc1(s) + pc2(1 - s) - targetPc
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
struct PcEqSum
|
|
{
|
|
PcEqSum(const MaterialLawManager& materialLawManager,
|
|
const int phase1,
|
|
const int phase2,
|
|
const int cell,
|
|
const double targetPc);
|
|
|
|
double operator()(double s) const;
|
|
|
|
private:
|
|
const MaterialLawManager& materialLawManager_;
|
|
const int phase1_;
|
|
const int phase2_;
|
|
const int cell_;
|
|
const double targetPc_;
|
|
};
|
|
|
|
/// Compute saturation of some phase corresponding to a given
|
|
/// capillary pressure, where the capillary pressure function
|
|
/// is given as a sum of two other functions.
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double satFromSumOfPcs(const MaterialLawManager& materialLawManager,
|
|
const int phase1,
|
|
const int phase2,
|
|
const int cell,
|
|
const double targetPc);
|
|
|
|
/// Compute saturation from depth. Used for constant capillary pressure function
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
double satFromDepth(const MaterialLawManager& materialLawManager,
|
|
const double cellDepth,
|
|
const double contactDepth,
|
|
const int phase,
|
|
const int cell,
|
|
const bool increasing = false);
|
|
|
|
/// Return true if capillary pressure function is constant
|
|
template <class FluidSystem, class MaterialLawManager>
|
|
bool isConstPc(const MaterialLawManager& materialLawManager,
|
|
const int phase,
|
|
const int cell);
|
|
|
|
} // namespace Equil
|
|
} // namespace Opm
|
|
|
|
#endif // EWOMS_EQUILIBRATIONHELPERS_HH
|