opm-simulators/ebos/ecloutputblackoilmodule.hh
2019-01-21 14:55:40 +01:00

1413 lines
66 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Ewoms::EclOutputBlackOilModule
*/
#ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
#define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH
#include "eclwriter.hh"
#include <ewoms/models/blackoil/blackoilproperties.hh>
#include <ewoms/common/propertysystem.hh>
#include <ewoms/common/parametersystem.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <dune/common/fvector.hh>
#include <type_traits>
BEGIN_PROPERTIES
// create new type tag for the Ecl-output
NEW_TYPE_TAG(EclOutputBlackOil);
NEW_PROP_TAG(ForceDisableFluidInPlaceOutput);
SET_BOOL_PROP(EclOutputBlackOil, ForceDisableFluidInPlaceOutput, false);
END_PROPERTIES
namespace Ewoms {
// forward declaration
template <class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Output module for the results black oil model writing in
* ECL binary format.
*/
template <class TypeTag>
class EclOutputBlackOilModule
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Discretization) Discretization;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef std::vector<Scalar> ScalarBuffer;
struct FipDataType
{
enum FipId
{
WaterInPlace = 0, //WIP
OilInPlace = 1, //OIP
GasInPlace = 2, //GIP
OilInPlaceInLiquidPhase = 3, //OIPL
OilInPlaceInGasPhase = 4, //OIPG
GasInPlaceInLiquidPhase = 5, //GIPL
GasInPlaceInGasPhase = 6, //GIPG
PoreVolume = 7, //PV
};
static const int numFipValues = PoreVolume + 1 ;
};
public:
template<class CollectDataToIORankType>
EclOutputBlackOilModule(const Simulator& simulator, const CollectDataToIORankType& collectToIORank)
: simulator_(simulator)
{
createLocalFipnum_();
// Summary output is for all steps
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
// Initialize block output
for (const auto& node: summaryConfig) {
if (node.type() == ECL_SMSPEC_BLOCK_VAR) {
if (collectToIORank.isGlobalIdxOnThisRank(node.num() - 1)) {
std::pair<std::string, int> key = std::make_pair(node.keyword(), node.num());
blockData_[key] = 0.0;
}
}
}
forceDisableFipOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput);
}
/*!
* \brief Register all run-time parameters for the Vtk output module.
*/
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput,
"Do not print fluid-in-place values after each report step even if requested by the deck.");
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to ECL output files
*/
void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log)
{
if (!std::is_same<Discretization, Ewoms::EcfvDiscretization<TypeTag> >::value)
return;
// Summary output is for all steps
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
// Only output RESTART_AUXILIARY asked for by the user.
const Opm::RestartConfig& restartConfig = simulator_.vanguard().eclState().getRestartConfig();
std::map<std::string, int> rstKeywords = restartConfig.getRestartKeywords(reportStepNum);
for (auto& keyValue: rstKeywords) {
keyValue.second = restartConfig.getKeyword(keyValue.first, reportStepNum);
}
outputFipRestart_ = false;
computeFip_ = false;
// Fluid in place
for (int i = 0; i<FipDataType::numFipValues; i++) {
if (!substep || summaryConfig.require3DField(fipEnumToString_(i))) {
if (rstKeywords["FIP"] > 0) {
rstKeywords["FIP"] = 0;
outputFipRestart_ = true;
}
fip_[i].resize(bufferSize, 0.0);
computeFip_ = true;
}
else
fip_[i].clear();
}
if (!substep || summaryConfig.hasKeyword("FPR") || summaryConfig.hasKeyword("FPRP") || summaryConfig.hasKeyword("RPR")) {
fip_[FipDataType::PoreVolume].resize(bufferSize, 0.0);
hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
pressureTimesPoreVolume_.resize(bufferSize, 0.0);
pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0);
}
else {
hydrocarbonPoreVolume_.clear();
pressureTimesPoreVolume_.clear();
pressureTimesHydrocarbonVolume_.clear();
}
// Well RFT data
if (!substep) {
for (const auto& well: simulator_.vanguard().schedule().getWells(reportStepNum)) {
// don't bother with wells not on this process
const auto& defunctWellNames = simulator_.vanguard().defunctWellNames();
if (defunctWellNames.find(well->name()) != defunctWellNames.end()) {
continue;
}
if (!(well->getRFTActive(reportStepNum)
|| well->getPLTActive(reportStepNum)))
continue;
for (const auto& connection: well->getConnections(reportStepNum)) {
const size_t i = size_t(connection.getI());
const size_t j = size_t(connection.getJ());
const size_t k = size_t(connection.getK());
const size_t index = simulator_.vanguard().eclState().getInputGrid().getGlobalIndex(i, j, k);
oilConnectionPressures_.emplace(std::make_pair(index, 0.0));
waterConnectionSaturations_.emplace(std::make_pair(index, 0.0));
gasConnectionSaturations_.emplace(std::make_pair(index, 0.0));
}
}
}
// always allocate memory for temperature
temperature_.resize(bufferSize, 0.0);
// Only provide restart on restart steps
if (!restartConfig.getWriteRestartFile(reportStepNum, log) || substep)
return;
// always output saturation of active phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
saturation_[phaseIdx].resize(bufferSize, 0.0);
}
// and oil pressure
oilPressure_.resize(bufferSize, 0.0);
if (FluidSystem::enableDissolvedGas())
rs_.resize(bufferSize, 0.0);
if (FluidSystem::enableVaporizedOil())
rv_.resize(bufferSize, 0.0);
if (GET_PROP_VALUE(TypeTag, EnableSolvent))
sSol_.resize(bufferSize, 0.0);
if (GET_PROP_VALUE(TypeTag, EnablePolymer))
cPolymer_.resize(bufferSize, 0.0);
if (simulator_.problem().vapparsActive())
soMax_.resize(bufferSize, 0.0);
if (simulator_.problem().materialLawManager()->enableHysteresis()) {
pcSwMdcOw_.resize(bufferSize, 0.0);
krnSwMdcOw_.resize(bufferSize, 0.0);
pcSwMdcGo_.resize(bufferSize, 0.0);
krnSwMdcGo_.resize(bufferSize, 0.0);
}
if (simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT"))
ppcw_.resize(bufferSize, 0.0);
if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) {
rstKeywords["RSSAT"] = 0;
gasDissolutionFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) {
rstKeywords["RVSAT"] = 0;
oilVaporizationFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) {
rstKeywords["BW"] = 0;
invB_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) {
rstKeywords["BO"] = 0;
invB_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) {
rstKeywords["BG"] = 0;
invB_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (rstKeywords["DEN"] > 0) {
rstKeywords["DEN"] = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
density_[phaseIdx].resize(bufferSize, 0.0);
}
}
const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
rstKeywords["VISC"] = 0;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) {
rstKeywords["VWAT"] = 0;
viscosity_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) {
rstKeywords["VOIL"] = 0;
viscosity_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) {
rstKeywords["VGAS"] = 0;
viscosity_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) {
rstKeywords["KRW"] = 0;
relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) {
rstKeywords["KRO"] = 0;
relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) {
rstKeywords["KRG"] = 0;
relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (rstKeywords["PBPD"] > 0) {
rstKeywords["PBPD"] = 0;
bubblePointPressure_.resize(bufferSize, 0.0);
dewPointPressure_.resize(bufferSize, 0.0);
}
// tracers
const int numTracers = simulator_.problem().tracerModel().numTracers();
if (numTracers > 0){
tracerConcentrations_.resize(numTracers);
for (int tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
{
tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
}
}
//Warn for any unhandled keyword
if (log) {
for (auto& keyValue: rstKeywords) {
if (keyValue.second > 0) {
std::string logstring = "Keyword '";
logstring.append(keyValue.first);
logstring.append("' is unhandled for output to file.");
Opm::OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
failedCellsPb_.clear();
failedCellsPd_.clear();
// Not supported in flow legacy
if (false)
saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0);
if (false)
oilSaturationPressure_.resize(bufferSize, 0.0);
}
/*!
* \brief Modify the internal buffers according to the intensive quanties relevant
* for an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!std::is_same<Discretization, Ewoms::EcfvDiscretization<TypeTag> >::value)
return;
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) {
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
typedef typename std::remove_const<typename std::remove_reference<decltype(fs)>::type>::type FluidState;
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (saturation_[phaseIdx].size() == 0)
continue;
saturation_[phaseIdx][globalDofIdx] = Opm::getValue(fs.saturation(phaseIdx));
Opm::Valgrind::CheckDefined(saturation_[phaseIdx][globalDofIdx]);
}
if (oilPressure_.size() > 0) {
oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx));
Opm::Valgrind::CheckDefined(oilPressure_[globalDofIdx]);
}
if (enableEnergy) {
temperature_[globalDofIdx] = Opm::getValue(fs.temperature(oilPhaseIdx));
Opm::Valgrind::CheckDefined(temperature_[globalDofIdx]);
}
if (gasDissolutionFactor_.size() > 0) {
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
gasDissolutionFactor_[globalDofIdx] =
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx, SoMax);
Opm::Valgrind::CheckDefined(gasDissolutionFactor_[globalDofIdx]);
}
if (oilVaporizationFactor_.size() > 0) {
Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx);
oilVaporizationFactor_[globalDofIdx] =
FluidSystem::template saturatedDissolutionFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx, SoMax);
Opm::Valgrind::CheckDefined(oilVaporizationFactor_[globalDofIdx]);
}
if (gasFormationVolumeFactor_.size() > 0) {
gasFormationVolumeFactor_[globalDofIdx] =
1.0/FluidSystem::template inverseFormationVolumeFactor<FluidState, Scalar>(fs, gasPhaseIdx, pvtRegionIdx);
Opm::Valgrind::CheckDefined(gasFormationVolumeFactor_[globalDofIdx]);
}
if (saturatedOilFormationVolumeFactor_.size() > 0) {
saturatedOilFormationVolumeFactor_[globalDofIdx] =
1.0/FluidSystem::template saturatedInverseFormationVolumeFactor<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
Opm::Valgrind::CheckDefined(saturatedOilFormationVolumeFactor_[globalDofIdx]);
}
if (oilSaturationPressure_.size() > 0) {
oilSaturationPressure_[globalDofIdx] =
FluidSystem::template saturationPressure<FluidState, Scalar>(fs, oilPhaseIdx, pvtRegionIdx);
Opm::Valgrind::CheckDefined(oilSaturationPressure_[globalDofIdx]);
}
if (rs_.size()) {
rs_[globalDofIdx] = Opm::getValue(fs.Rs());
Opm::Valgrind::CheckDefined(rs_[globalDofIdx]);
}
if (rv_.size()) {
rv_[globalDofIdx] = Opm::getValue(fs.Rv());
Opm::Valgrind::CheckDefined(rv_[globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (invB_[phaseIdx].size() == 0)
continue;
invB_[phaseIdx][globalDofIdx] = Opm::getValue(fs.invB(phaseIdx));
Opm::Valgrind::CheckDefined(invB_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (density_[phaseIdx].size() == 0)
continue;
density_[phaseIdx][globalDofIdx] = Opm::getValue(fs.density(phaseIdx));
Opm::Valgrind::CheckDefined(density_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (viscosity_[phaseIdx].size() == 0)
continue;
viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(fs.viscosity(phaseIdx));
Opm::Valgrind::CheckDefined(viscosity_[phaseIdx][globalDofIdx]);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (relativePermeability_[phaseIdx].size() == 0)
continue;
relativePermeability_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.relativePermeability(phaseIdx));
Opm::Valgrind::CheckDefined(relativePermeability_[phaseIdx][globalDofIdx]);
}
if (sSol_.size() > 0) {
sSol_[globalDofIdx] = intQuants.solventSaturation().value();
}
if (cPolymer_.size() > 0) {
cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value();
}
if (bubblePointPressure_.size() > 0) {
try {
bubblePointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()));
}
catch (const Opm::NumericalIssue&) {
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
failedCellsPb_.push_back(cartesianIdx);
}
}
if (dewPointPressure_.size() > 0) {
try {
dewPointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()));
}
catch (const Opm::NumericalIssue&) {
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
failedCellsPd_.push_back(cartesianIdx);
}
}
if (soMax_.size() > 0)
soMax_[globalDofIdx] = elemCtx.simulator().problem().maxOilSaturation(globalDofIdx);
const auto& matLawManager = elemCtx.simulator().problem().materialLawManager();
if (matLawManager->enableHysteresis()) {
if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) {
matLawManager->oilWaterHysteresisParams(
pcSwMdcOw_[globalDofIdx],
krnSwMdcOw_[globalDofIdx],
globalDofIdx);
}
if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) {
matLawManager->gasOilHysteresisParams(
pcSwMdcGo_[globalDofIdx],
krnSwMdcGo_[globalDofIdx],
globalDofIdx);
}
}
if (ppcw_.size() > 0)
ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow;
// hack to make the intial output of rs and rv Ecl compatible.
// For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step
// where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite
// rs and rv with the values computed in the initially.
// Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values.
// This can be removed when ebos has 100% controll over output
if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
const auto& fsInitial = elemCtx.simulator().problem().initialFluidState(globalDofIdx);
// use initial rs and rv values
if (rv_.size() > 0)
rv_[globalDofIdx] = fsInitial.Rv();
if (rs_.size() > 0)
rs_[globalDofIdx] = fsInitial.Rs();
// re-compute the volume factors, viscosities and densities if asked for
if (density_[oilPhaseIdx].size() > 0)
density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (density_[gasPhaseIdx].size() > 0)
density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
if (invB_[oilPhaseIdx].size() > 0)
invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (invB_[gasPhaseIdx].size() > 0)
invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
if (viscosity_[oilPhaseIdx].size() > 0)
viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
oilPhaseIdx,
intQuants.pvtRegionIndex());
if (viscosity_[gasPhaseIdx].size() > 0)
viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial,
gasPhaseIdx,
intQuants.pvtRegionIndex());
}
// Add fluid in Place values
updateFluidInPlace_(elemCtx, dofIdx);
// Adding block data
const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx];
for (auto& val: blockData_) {
const auto& key = val.first;
int cartesianIdxBlock = key.second - 1;
if (cartesianIdx == cartesianIdxBlock) {
if (key.first == "BWSAT")
val.second = Opm::getValue(fs.saturation(waterPhaseIdx));
else if (key.first == "BGSAT")
val.second = Opm::getValue(fs.saturation(gasPhaseIdx));
else if (key.first == "BPR")
val.second = Opm::getValue(fs.pressure(oilPhaseIdx));
else {
std::string logstring = "Keyword '";
logstring.append(key.first);
logstring.append("' is unhandled for output to file.");
Opm::OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
// Adding Well RFT data
if (oilConnectionPressures_.count(cartesianIdx) > 0) {
oilConnectionPressures_[cartesianIdx] = Opm::getValue(fs.pressure(oilPhaseIdx));
}
if (waterConnectionSaturations_.count(cartesianIdx) > 0) {
waterConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(waterPhaseIdx));
}
if (gasConnectionSaturations_.count(cartesianIdx) > 0) {
gasConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(gasPhaseIdx));
}
// tracers
const auto& tracerModel = simulator_.problem().tracerModel();
if (tracerConcentrations_.size()>0) {
for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){
if (tracerConcentrations_[tracerIdx].size() == 0)
continue;
tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx);
}
}
}
}
void outputErrorLog()
{
const size_t maxNumCellsFaillog = 20;
int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size();
std::vector<int> displPb, displPd, recvLenPb, recvLenPd;
const auto& comm = simulator_.gridView().comm();
if (isIORank_()) {
displPb.resize(comm.size()+1, 0);
displPd.resize(comm.size()+1, 0);
recvLenPb.resize(comm.size());
recvLenPd.resize(comm.size());
}
comm.gather(&pbSize, recvLenPb.data(), 1, 0);
comm.gather(&pdSize, recvLenPd.data(), 1, 0);
std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1);
std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1);
std::vector<int> globalFailedCellsPb, globalFailedCellsPd;
if (isIORank_()) {
globalFailedCellsPb.resize(displPb.back());
globalFailedCellsPd.resize(displPd.back());
}
comm.gatherv(failedCellsPb_.data(), static_cast<int>(failedCellsPb_.size()),
globalFailedCellsPb.data(), recvLenPb.data(),
displPb.data(), 0);
comm.gatherv(failedCellsPd_.data(), static_cast<int>(failedCellsPd_.size()),
globalFailedCellsPd.data(), recvLenPd.data(),
displPd.data(), 0);
std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end());
std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end());
if (globalFailedCellsPb.size() > 0) {
std::stringstream errlog;
errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells [";
errlog << globalFailedCellsPb[0];
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size());
for (size_t i = 1; i < maxElems; ++i) {
errlog << ", " << globalFailedCellsPb[i];
}
if (globalFailedCellsPb.size() > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << "]";
Opm::OpmLog::warning("Bubble point numerical problem", errlog.str());
}
if (globalFailedCellsPd.size() > 0) {
std::stringstream errlog;
errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells [";
errlog << globalFailedCellsPd[0];
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size());
for (size_t i = 1; i < maxElems; ++i) {
errlog << ", " << globalFailedCellsPd[i];
}
if (globalFailedCellsPd.size() > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << "]";
Opm::OpmLog::warning("Dew point numerical problem", errlog.str());
}
}
void addRftDataToWells(Opm::data::Wells& wellDatas, size_t reportStepNum)
{
for (const auto& well: simulator_.vanguard().schedule().getWells(reportStepNum)) {
// don't bother with wells not on this process
const auto& defunctWellNames = simulator_.vanguard().defunctWellNames();
if (defunctWellNames.find(well->name()) != defunctWellNames.end()) {
continue;
}
//add data infrastructure for shut wells
if (!wellDatas.count(well->name())) {
Opm::data::Well wellData;
if (!(well->getRFTActive(reportStepNum)
|| well->getPLTActive(reportStepNum)))
continue;
wellData.connections.resize(well->getConnections(reportStepNum).size());
size_t count = 0;
for (const auto& connection: well->getConnections(reportStepNum)) {
const size_t i = size_t(connection.getI());
const size_t j = size_t(connection.getJ());
const size_t k = size_t(connection.getK());
const size_t index = simulator_.vanguard().eclState().getInputGrid().getGlobalIndex(i, j, k);
auto& connectionData = wellData.connections[count];
connectionData.index = index;
count++;
}
wellDatas.emplace(std::make_pair(well->name(), wellData));
}
Opm::data::Well& wellData = wellDatas.at(well->name());
for (auto& connectionData: wellData.connections) {
const auto index = connectionData.index;
if (oilConnectionPressures_.count(index) > 0)
connectionData.cell_pressure = oilConnectionPressures_.at(index);
if (waterConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_water = waterConnectionSaturations_.at(index);
if (gasConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index);
}
}
oilConnectionPressures_.clear();
waterConnectionSaturations_.clear();
gasConnectionSaturations_.clear();
}
/*!
* \brief Move all buffers to data::Solution.
*/
void assignToSolution(Opm::data::Solution& sol)
{
if (!std::is_same<Discretization, Ewoms::EcfvDiscretization<TypeTag>>::value)
return;
if (oilPressure_.size() > 0) {
sol.insert("PRESSURE", Opm::UnitSystem::measure::pressure, std::move(oilPressure_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (enableEnergy) {
sol.insert("TEMP", Opm::UnitSystem::measure::temperature, std::move(temperature_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && saturation_[waterPhaseIdx].size() > 0) {
sol.insert("SWAT", Opm::UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && saturation_[gasPhaseIdx].size() > 0) {
sol.insert("SGAS", Opm::UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION);
}
if (ppcw_.size() > 0) {
sol.insert ("PPCW", Opm::UnitSystem::measure::pressure, std::move(ppcw_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (gasDissolutionFactor_.size() > 0) {
sol.insert("RSSAT", Opm::UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (oilVaporizationFactor_.size() > 0) {
sol.insert("RVSAT", Opm::UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (rs_.size() > 0) {
sol.insert("RS", Opm::UnitSystem::measure::gas_oil_ratio, std::move(rs_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (rv_.size() > 0) {
sol.insert("RV", Opm::UnitSystem::measure::oil_gas_ratio, std::move(rv_), Opm::data::TargetType::RESTART_SOLUTION);
}
if (invB_[waterPhaseIdx].size() > 0) {
sol.insert("1OVERBW", Opm::UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (invB_[oilPhaseIdx].size() > 0) {
sol.insert("1OVERBO", Opm::UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (invB_[gasPhaseIdx].size() > 0) {
sol.insert("1OVERBG", Opm::UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (density_[waterPhaseIdx].size() > 0) {
sol.insert("WAT_DEN", Opm::UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (density_[oilPhaseIdx].size() > 0) {
sol.insert("OIL_DEN", Opm::UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (density_[gasPhaseIdx].size() > 0) {
sol.insert("GAS_DEN", Opm::UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (viscosity_[waterPhaseIdx].size() > 0) {
sol.insert("WAT_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (viscosity_[oilPhaseIdx].size() > 0) {
sol.insert("OIL_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (viscosity_[gasPhaseIdx].size() > 0) {
sol.insert("GAS_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (relativePermeability_[waterPhaseIdx].size() > 0) {
sol.insert("WATKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (relativePermeability_[oilPhaseIdx].size() > 0) {
sol.insert("OILKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (relativePermeability_[gasPhaseIdx].size() > 0) {
sol.insert("GASKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY);
}
if (pcSwMdcOw_.size() > 0)
sol.insert ("PCSWM_OW", Opm::UnitSystem::measure::identity, std::move(pcSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY);
if (krnSwMdcOw_.size() > 0)
sol.insert ("KRNSW_OW", Opm::UnitSystem::measure::identity, std::move(krnSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY);
if (pcSwMdcGo_.size() > 0)
sol.insert ("PCSWM_GO", Opm::UnitSystem::measure::identity, std::move(pcSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY);
if (krnSwMdcGo_.size() > 0)
sol.insert ("KRNSW_GO", Opm::UnitSystem::measure::identity, std::move(krnSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY);
if (soMax_.size() > 0)
sol.insert ("SOMAX", Opm::UnitSystem::measure::identity, std::move(soMax_), Opm::data::TargetType::RESTART_SOLUTION);
if (sSol_.size() > 0)
sol.insert ("SSOLVENT", Opm::UnitSystem::measure::identity, std::move(sSol_), Opm::data::TargetType::RESTART_SOLUTION);
if (cPolymer_.size() > 0)
sol.insert ("POLYMER", Opm::UnitSystem::measure::identity, std::move(cPolymer_), Opm::data::TargetType::RESTART_SOLUTION);
if (dewPointPressure_.size() > 0)
sol.insert ("PDEW", Opm::UnitSystem::measure::pressure, std::move(dewPointPressure_), Opm::data::TargetType::RESTART_AUXILIARY);
if (bubblePointPressure_.size() > 0)
sol.insert ("PBUB", Opm::UnitSystem::measure::pressure, std::move(bubblePointPressure_), Opm::data::TargetType::RESTART_AUXILIARY);
// Fluid in place
for (int i = 0; i<FipDataType::numFipValues; i++) {
if (outputFipRestart_ && fip_[i].size() > 0) {
sol.insert(fipEnumToString_(i),
Opm::UnitSystem::measure::volume,
fip_[i],
Opm::data::TargetType::SUMMARY);
}
}
// tracers
const auto& tracerModel = simulator_.problem().tracerModel();
if (tracerConcentrations_.size()>0) {
for (int tracerIdx = 0; tracerIdx<tracerModel.numTracers(); tracerIdx++){
std::string tmp = tracerModel.tracerName(tracerIdx) + "F";
sol.insert (tmp, Opm::UnitSystem::measure::identity, std::move(tracerConcentrations_[tracerIdx]), Opm::data::TargetType::RESTART_SOLUTION);
}
}
}
// write Fluid In Place to output log
void outputFipLog(std::map<std::string, double>& miscSummaryData, std::map<std::string, std::vector<double>>& regionData, const bool substep)
{
const auto& comm = simulator_.gridView().comm();
size_t ntFip = *std::max_element(fipnum_.begin(), fipnum_.end());
ntFip = comm.max(ntFip);
// sum values over each region
ScalarBuffer regionFipValues[FipDataType::numFipValues];
for (int i = 0; i < FipDataType::numFipValues; i++) {
regionFipValues[i] = computeFipForRegions_(fip_[i], fipnum_, ntFip);
if (isIORank_() && origRegionValues_[i].empty())
origRegionValues_[i] = regionFipValues[i];
}
// sum all region values to compute the field total
std::vector<int> fieldNum(ntFip, 1);
ScalarBuffer fieldFipValues(FipDataType::numFipValues, 0.0);
bool comunicateSum = false; // the regionValues are already summed over all ranks.
for (int i = 0; i<FipDataType::numFipValues; i++) {
const ScalarBuffer& tmp = computeFipForRegions_(regionFipValues[i], fieldNum, 1, comunicateSum);
fieldFipValues[i] = tmp[0];
}
// compute the hydrocarbon averaged pressure over the regions.
ScalarBuffer regPressurePv = computeFipForRegions_(pressureTimesPoreVolume_, fipnum_, ntFip);
ScalarBuffer regPvHydrocarbon = computeFipForRegions_(hydrocarbonPoreVolume_, fipnum_, ntFip);
ScalarBuffer regPressurePvHydrocarbon = computeFipForRegions_(pressureTimesHydrocarbonVolume_, fipnum_, ntFip);
ScalarBuffer fieldPressurePv = computeFipForRegions_(regPressurePv, fieldNum, 1, comunicateSum);
ScalarBuffer fieldPvHydrocarbon = computeFipForRegions_(regPvHydrocarbon, fieldNum, 1, comunicateSum);
ScalarBuffer fieldPressurePvHydrocarbon = computeFipForRegions_(regPressurePvHydrocarbon, fieldNum, 1, comunicateSum);
// output on io rank
// the original Fip values are stored on the first step
// TODO: Store initial Fip in the init file and restore them
// and use them here.
const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig();
if (isIORank_()) {
// Field summary output
for (int i = 0; i<FipDataType::numFipValues; i++) {
std::string key = "F" + fipEnumToString_(i);
if (summaryConfig.hasKeyword(key))
miscSummaryData[key] = fieldFipValues[i];
}
if (summaryConfig.hasKeyword("FOE") && !origTotalValues_.empty())
miscSummaryData["FOE"] = fieldFipValues[FipDataType::OilInPlace] / origTotalValues_[FipDataType::OilInPlace];
if (summaryConfig.hasKeyword("FPR"))
miscSummaryData["FPR"] = pressureAverage_(fieldPressurePvHydrocarbon[0], fieldPvHydrocarbon[0], fieldPressurePv[0], fieldFipValues[FipDataType::PoreVolume], true);
if (summaryConfig.hasKeyword("FPRP"))
miscSummaryData["FPR"] = pressureAverage_(fieldPressurePvHydrocarbon[0], fieldPvHydrocarbon[0], fieldPressurePv[0], fieldFipValues[FipDataType::PoreVolume], false);
// Region summary output
for (int i = 0; i<FipDataType::numFipValues; i++) {
std::string key = "R" + fipEnumToString_(i);
if (summaryConfig.hasKeyword(key))
regionData[key] = regionFipValues[i];
}
if (summaryConfig.hasKeyword("RPR"))
regionData["RPR"] = pressureAverage_(regPressurePvHydrocarbon, regPvHydrocarbon, regPressurePv, regionFipValues[FipDataType::PoreVolume], true);
if (summaryConfig.hasKeyword("RPRP"))
regionData["RPRP"] = pressureAverage_(regPressurePvHydrocarbon, regPvHydrocarbon, regPressurePv, regionFipValues[FipDataType::PoreVolume], false);
// Output to log
if (!substep) {
fipUnitConvert_(fieldFipValues);
if (origTotalValues_.empty())
origTotalValues_ = fieldFipValues;
Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(fieldPressurePvHydrocarbon[0], fieldPvHydrocarbon[0], fieldPressurePv[0], fieldFipValues[FipDataType::PoreVolume], true);
pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure);
outputRegionFluidInPlace_(origTotalValues_, fieldFipValues, fieldHydroCarbonPoreVolumeAveragedPressure, 0);
for (size_t reg = 0; reg < ntFip; ++reg) {
ScalarBuffer tmpO(FipDataType::numFipValues, 0.0);
for (int i = 0; i<FipDataType::numFipValues; i++) {
tmpO[i] = origRegionValues_[i][reg];
}
fipUnitConvert_(tmpO);
ScalarBuffer tmp(FipDataType::numFipValues, 0.0);
for (int i = 0; i<FipDataType::numFipValues; i++) {
tmp[i] = regionFipValues[i][reg];
}
fipUnitConvert_(tmp);
Scalar regHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(regPressurePvHydrocarbon[reg], regPvHydrocarbon[reg], regPressurePv[reg], regionFipValues[FipDataType::PoreVolume][reg], true);
pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure);
outputRegionFluidInPlace_(tmpO, tmp, regHydroCarbonPoreVolumeAveragedPressure, reg + 1);
}
}
}
}
void setRestart(const Opm::data::Solution& sol, unsigned elemIdx, unsigned globalDofIndex)
{
Scalar so = 1.0;
if (saturation_[waterPhaseIdx].size() > 0 && sol.has("SWAT")) {
saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex];
so -= sol.data("SWAT")[globalDofIndex];
}
if (saturation_[gasPhaseIdx].size() > 0 && sol.has("SGAS")) {
saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex];
so -= sol.data("SGAS")[globalDofIndex];
}
assert(saturation_[oilPhaseIdx].size() > 0);
saturation_[oilPhaseIdx][elemIdx] = so;
if (oilPressure_.size() > 0 && sol.has("PRESSURE"))
oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex];
if (enableEnergy && sol.has("TEMP"))
temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex];
if (rs_.size() > 0 && sol.has("RS"))
rs_[elemIdx] = sol.data("RS")[globalDofIndex];
if (rv_.size() > 0 && sol.has("RV"))
rv_[elemIdx] = sol.data("RV")[globalDofIndex];
if (sSol_.size() > 0) {
// keep the SSOL option for backward compatibility
// should be removed after 10.2018 release
if (sol.has("SSOL"))
sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex];
else if (sol.has("SSOLVENT"))
sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex];
}
if (cPolymer_.size() > 0 && sol.has("POLYMER"))
cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex];
if (soMax_.size() > 0 && sol.has("SOMAX"))
soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex];
if (pcSwMdcOw_.size() > 0 &&sol.has("PCSWM_OW"))
pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex];
if (krnSwMdcOw_.size() > 0 && sol.has("KRNSW_OW"))
krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex];
if (pcSwMdcGo_.size() > 0 && sol.has("PCSWM_GO"))
pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex];
if (krnSwMdcGo_.size() > 0 && sol.has("KRNSW_GO"))
krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex];
if (ppcw_.size() > 0 && sol.has("PPCW"))
ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex];
}
template <class FluidState>
void assignToFluidState(FluidState& fs, unsigned elemIdx) const
{
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (saturation_[phaseIdx].size() == 0)
continue;
fs.setSaturation(phaseIdx, saturation_[phaseIdx][elemIdx]);
}
if (oilPressure_.size() > 0) {
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
Dune::FieldVector< Scalar, numPhases > pc(0);
const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx);
MaterialLaw::capillaryPressures(pc, matParams, fs);
Opm::Valgrind::CheckDefined(oilPressure_[elemIdx]);
Opm::Valgrind::CheckDefined(pc);
assert(FluidSystem::phaseIsActive(oilPhaseIdx));
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
fs.setPressure(phaseIdx, oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx]));
}
}
if (enableEnergy)
fs.setTemperature(temperature_[elemIdx]);
if (rs_.size() > 0)
fs.setRs(rs_[elemIdx]);
if (rv_.size() > 0)
fs.setRv(rv_[elemIdx]);
}
void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const {
if (soMax_.size() > 0)
simulator.problem().setMaxOilSaturation(elemIdx, soMax_[elemIdx]);
if (simulator.problem().materialLawManager()->enableHysteresis()) {
auto matLawManager = simulator.problem().materialLawManager();
if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) {
matLawManager->setOilWaterHysteresisParams(
pcSwMdcOw_[elemIdx],
krnSwMdcOw_[elemIdx],
elemIdx);
}
if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) {
matLawManager->setGasOilHysteresisParams(
pcSwMdcGo_[elemIdx],
krnSwMdcGo_[elemIdx],
elemIdx);
}
}
if (simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT")) {
auto oilWaterScaledEpsInfoDrainage = simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainagePointerReferenceHack(elemIdx);
oilWaterScaledEpsInfoDrainage->maxPcow = ppcw_[elemIdx];
}
}
Scalar getSolventSaturation(unsigned elemIdx) const {
if (sSol_.size() > 0)
return sSol_[elemIdx];
return 0;
}
Scalar getPolymerConcentration(unsigned elemIdx) const {
if (cPolymer_.size() > 0)
return cPolymer_[elemIdx];
return 0;
}
const std::map<std::pair<std::string, int>, double>& getBlockData() {
return blockData_;
}
private:
bool isIORank_() const
{
const auto& comm = simulator_.gridView().comm();
return comm.rank() == 0;
}
void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx)
{
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
// Fluid in Place calculations
// calculate the pore volume of the current cell. Note that the porosity
// returned by the intensive quantities is defined as the ratio of pore
// space to total cell volume and includes all pressure dependent (->
// rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG,
// PORV, MINPV and friends). Also note that because of this, the porosity
// returned by the intensive quantities can be outside of the physical
// range [0, 1] in pathetic cases.
const double pv =
elemCtx.simulator().model().dofTotalVolume(globalDofIdx)
* intQuants.porosity().value();
if (pressureTimesHydrocarbonVolume_.size() > 0 && pressureTimesPoreVolume_.size() > 0) {
assert(hydrocarbonPoreVolume_.size() == pressureTimesHydrocarbonVolume_.size());
assert(fip_[FipDataType::PoreVolume].size() == pressureTimesPoreVolume_.size());
fip_[FipDataType::PoreVolume][globalDofIdx] = pv;
Scalar hydrocarbon = 0.0;
if (FluidSystem::phaseIsActive(oilPhaseIdx))
hydrocarbon += Opm::getValue(fs.saturation(oilPhaseIdx));
if (FluidSystem::phaseIsActive(gasPhaseIdx))
hydrocarbon += Opm::getValue(fs.saturation(gasPhaseIdx));
hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon;
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
pressureTimesPoreVolume_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)) * pv;
pressureTimesHydrocarbonVolume_[globalDofIdx] = pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon;
}
}
if (computeFip_) {
Scalar fip[FluidSystem::numPhases];
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
fip[phaseIdx] = 0.0;
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const double b = Opm::getValue(fs.invB(phaseIdx));
const double s = Opm::getValue(fs.saturation(phaseIdx));
fip[phaseIdx] = b * s * pv;
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlace].size() > 0)
fip_[FipDataType::OilInPlace][globalDofIdx] = fip[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlace].size() > 0)
fip_[FipDataType::GasInPlace][globalDofIdx] = fip[gasPhaseIdx];
if (FluidSystem::phaseIsActive(waterPhaseIdx) && fip_[FipDataType::WaterInPlace].size() > 0)
fip_[FipDataType::WaterInPlace][globalDofIdx] = fip[waterPhaseIdx];
// Store the pure oil and gas Fip
if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlaceInLiquidPhase].size() > 0)
fip_[FipDataType::OilInPlaceInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlaceInGasPhase].size() > 0)
fip_[FipDataType::GasInPlaceInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
// Gas dissolved in oil and vaporized oil
Scalar gasInPlaceLiquid = Opm::getValue(fs.Rs()) * fip[oilPhaseIdx];
Scalar oilInPlaceGas = Opm::getValue(fs.Rv()) * fip[gasPhaseIdx];
if (fip_[FipDataType::GasInPlaceInGasPhase].size() > 0)
fip_[FipDataType::GasInPlaceInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
if (fip_[FipDataType::OilInPlaceInGasPhase].size() > 0)
fip_[FipDataType::OilInPlaceInGasPhase][globalDofIdx] = oilInPlaceGas;
// Add dissolved gas and vaporized oil to total Fip
if (fip_[FipDataType::OilInPlace].size() > 0)
fip_[FipDataType::OilInPlace][globalDofIdx] += oilInPlaceGas;
if (fip_[FipDataType::GasInPlace].size() > 0)
fip_[FipDataType::GasInPlace][globalDofIdx] += gasInPlaceLiquid;
}
}
}
void createLocalFipnum_()
{
const std::vector<int>& fipnumGlobal = simulator_.vanguard().eclState().get3DProperties().getIntGridProperty("FIPNUM").getData();
// Get compressed cell fipnum.
const auto& gridView = simulator_.vanguard().gridView();
unsigned numElements = gridView.size(/*codim=*/0);
fipnum_.resize(numElements, 0.0);
if (!fipnumGlobal.empty()) {
ElementContext elemCtx(simulator_);
ElementIterator elemIt = gridView.template begin</*codim=*/0>();
const ElementIterator& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // assign no fipnum regions to ghost elements
elemCtx.updatePrimaryStencil(elem);
const unsigned elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
fipnum_[elemIdx] = fipnumGlobal[simulator_.vanguard().cartesianIndex(elemIdx)];
}
}
}
// Sum Fip values over regions.
ScalarBuffer computeFipForRegions_(const ScalarBuffer& fip, std::vector<int>& regionId, size_t maxNumberOfRegions, bool commSum = true)
{
ScalarBuffer totals(maxNumberOfRegions, 0.0);
if (fip.empty())
return totals;
assert(regionId.size() == fip.size());
for (size_t j = 0; j < regionId.size(); ++j) {
const int regionIdx = regionId[j] - 1;
// the cell is not attributed to any region. ignore it!
if (regionIdx < 0)
continue;
assert(regionIdx < static_cast<int>(maxNumberOfRegions));
totals[regionIdx] += fip[j];
}
if (commSum) {
const auto& comm = simulator_.gridView().comm();
for (size_t i = 0; i < maxNumberOfRegions; ++i)
totals[i] = comm.sum(totals[i]);
}
return totals;
}
ScalarBuffer pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon, const ScalarBuffer& pvHydrocarbon, const ScalarBuffer& pressurePv, const ScalarBuffer& pv, bool hydrocarbon)
{
size_t size = pressurePvHydrocarbon.size();
assert(pvHydrocarbon.size() == size);
assert(pressurePv.size() == size);
assert(pv.size() == size);
ScalarBuffer fraction(size, 0.0);
for (size_t i = 0; i < size; ++i) {
fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon);
}
return fraction;
}
Scalar pressureAverage_(const Scalar& pressurePvHydrocarbon, const Scalar& pvHydrocarbon, const Scalar& pressurePv, const Scalar& pv, bool hydrocarbon)
{
if (pvHydrocarbon > 1e-10 && hydrocarbon)
return pressurePvHydrocarbon / pvHydrocarbon;
return pressurePv / pv;
}
void fipUnitConvert_(ScalarBuffer& fip)
{
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], Opm::unit::stb);
fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], Opm::unit::stb);
fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], Opm::unit::stb);
fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], Opm::unit::stb);
fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], 1000*Opm::unit::cubic(Opm::unit::feet));
fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], 1000*Opm::unit::cubic(Opm::unit::feet));
fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], 1000*Opm::unit::cubic(Opm::unit::feet));
fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], Opm::unit::stb);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
Scalar scc = Opm::unit::cubic(Opm::prefix::centi * Opm::unit::meter); //standard cubic cm.
fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], scc);
fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], scc);
fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], scc);
fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], scc);
fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], scc);
fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], scc);
fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], scc);
fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], scc);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
// nothing to do
}
else {
throw std::runtime_error("Unsupported unit type for fluid in place output.");
}
}
void pressureUnitConvert_(Scalar& pav)
{
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
pav = Opm::unit::convert::to(pav, Opm::unit::psia);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
pav = Opm::unit::convert::to(pav, Opm::unit::barsa);
}
else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) {
pav = Opm::unit::convert::to(pav, Opm::unit::atm);
}
else {
throw std::runtime_error("Unsupported unit type for fluid in place output.");
}
}
void outputRegionFluidInPlace_(const ScalarBuffer& oip, const ScalarBuffer& cip, const Scalar& pav, const int reg)
{
if (forceDisableFipOutput_)
return;
// don't output FIPNUM report if the region has no porv.
if (cip[FipDataType::PoreVolume] == 0)
return;
const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits();
std::ostringstream ss;
if (!reg) {
ss << " ===================================================\n"
<< " : Field Totals :\n";
}
else {
ss << " ===================================================\n"
<< " : FIPNUM report region "
<< std::setw(2) << reg << " :\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RM3 :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Porv volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
}
if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RB :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Pore volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
}
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
<< ":Currently in place :" << std::setw(14) << cip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << cip[FipDataType::OilInPlace] << ":"
<< std::setw(13) << cip[FipDataType::WaterInPlace] << " :" << std::setw(14) << (cip[FipDataType::GasInPlaceInGasPhase]) << std::setw(14) << cip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::GasInPlace] << ":\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
<< ":Originally in place :" << std::setw(14) << oip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::OilInPlace] << ":"
<< std::setw(13) << oip[FipDataType::WaterInPlace] << " :" << std::setw(14) << oip[FipDataType::GasInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::GasInPlace] << ":\n"
<< ":========================:==========================================:================:==========================================:\n";
Opm::OpmLog::note(ss.str());
}
std::string fipEnumToString_(int i)
{
typedef typename FipDataType::FipId FipId;
switch(static_cast<FipId>(i))
{
case FipDataType::WaterInPlace: return "WIP";
case FipDataType::OilInPlace: return "OIP";
case FipDataType::GasInPlace: return "GIP";
case FipDataType::OilInPlaceInLiquidPhase: return "OIPL";
case FipDataType::OilInPlaceInGasPhase: return "OIPG";
case FipDataType::GasInPlaceInLiquidPhase: return "GIPL";
case FipDataType::GasInPlaceInGasPhase: return "GIPG";
case FipDataType::PoreVolume: return "PV";
}
return "ERROR";
}
const Simulator& simulator_;
bool outputFipRestart_;
bool computeFip_;
bool forceDisableFipOutput_;
ScalarBuffer saturation_[numPhases];
ScalarBuffer oilPressure_;
ScalarBuffer temperature_;
ScalarBuffer gasDissolutionFactor_;
ScalarBuffer oilVaporizationFactor_;
ScalarBuffer gasFormationVolumeFactor_;
ScalarBuffer saturatedOilFormationVolumeFactor_;
ScalarBuffer oilSaturationPressure_;
ScalarBuffer rs_;
ScalarBuffer rv_;
ScalarBuffer invB_[numPhases];
ScalarBuffer density_[numPhases];
ScalarBuffer viscosity_[numPhases];
ScalarBuffer relativePermeability_[numPhases];
ScalarBuffer sSol_;
ScalarBuffer cPolymer_;
ScalarBuffer soMax_;
ScalarBuffer pcSwMdcOw_;
ScalarBuffer krnSwMdcOw_;
ScalarBuffer pcSwMdcGo_;
ScalarBuffer krnSwMdcGo_;
ScalarBuffer ppcw_;
ScalarBuffer bubblePointPressure_;
ScalarBuffer dewPointPressure_;
std::vector<int> failedCellsPb_;
std::vector<int> failedCellsPd_;
std::vector<int> fipnum_;
ScalarBuffer fip_[FipDataType::numFipValues];
ScalarBuffer origTotalValues_;
ScalarBuffer origRegionValues_[FipDataType::numFipValues];
ScalarBuffer hydrocarbonPoreVolume_;
ScalarBuffer pressureTimesPoreVolume_;
ScalarBuffer pressureTimesHydrocarbonVolume_;
std::map<std::pair<std::string, int>, double> blockData_;
std::map<size_t, Scalar> oilConnectionPressures_;
std::map<size_t, Scalar> waterConnectionSaturations_;
std::map<size_t, Scalar> gasConnectionSaturations_;
std::vector<ScalarBuffer> tracerConcentrations_;
};
} // namespace Ewoms
#endif