mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-20 01:32:57 -06:00
422 lines
19 KiB
C++
422 lines
19 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/polymer/polymerUtilities.hpp>
|
|
#include <opm/core/utility/miscUtilities.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/// @brief Computes total mobility for a set of s/c values.
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[in] c polymer concentration
|
|
/// @param[out] totmob total mobilities.
|
|
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& s,
|
|
const std::vector<double>& c,
|
|
const std::vector<double>& cmax,
|
|
std::vector<double>& totmob)
|
|
{
|
|
int num_cells = cells.size();
|
|
totmob.resize(num_cells);
|
|
std::vector<double> kr(2*num_cells);
|
|
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
|
|
const double* visc = props.viscosity();
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double* kr_cell = &kr[2*cell];
|
|
polyprops.effectiveTotalMobility(c[cell], cmax[cell], visc, kr_cell,
|
|
totmob[cell]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// @brief Computes total mobility and omega for a set of s/c values.
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[in] c polymer concentration
|
|
/// @param[out] totmob total mobility
|
|
/// @param[out] omega mobility-weighted (or fractional-flow weighted)
|
|
/// fluid densities.
|
|
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& s,
|
|
const std::vector<double>& c,
|
|
const std::vector<double>& cmax,
|
|
std::vector<double>& totmob,
|
|
std::vector<double>& omega)
|
|
{
|
|
int num_cells = cells.size();
|
|
int num_phases = props.numPhases();
|
|
totmob.resize(num_cells);
|
|
omega.resize(num_cells);
|
|
assert(int(s.size()) == num_cells*num_phases);
|
|
std::vector<double> kr(num_cells*num_phases);
|
|
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
|
|
const double* visc = props.viscosity();
|
|
const double* rho = props.density();
|
|
double mob[2]; // here we assume num_phases=2
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double* kr_cell = &kr[2*cell];
|
|
polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell,
|
|
mob);
|
|
totmob[cell] = mob[0] + mob[1];
|
|
omega[cell] = rho[0]*mob[0]/totmob[cell] + rho[1]*mob[1]/totmob[cell];
|
|
}
|
|
}
|
|
|
|
|
|
/// Computes the fractional flow for each cell in the cells argument
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[in] c concentration values
|
|
/// @param[in] cmax max polymer concentration experienced by cell
|
|
/// @param[out] fractional_flow the fractional flow for each phase for each cell.
|
|
void computeFractionalFlow(const Opm::IncompPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& s,
|
|
const std::vector<double>& c,
|
|
const std::vector<double>& cmax,
|
|
std::vector<double>& fractional_flows)
|
|
{
|
|
int num_cells = cells.size();
|
|
int num_phases = props.numPhases();
|
|
if (num_phases != 2) {
|
|
OPM_THROW(std::runtime_error, "computeFractionalFlow() assumes 2 phases.");
|
|
}
|
|
fractional_flows.resize(num_cells*num_phases);
|
|
assert(int(s.size()) == num_cells*num_phases);
|
|
std::vector<double> kr(num_cells*num_phases);
|
|
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
|
|
const double* visc = props.viscosity();
|
|
double mob[2]; // here we assume num_phases=2
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double* kr_cell = &kr[2*cell];
|
|
polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell, mob);
|
|
fractional_flows[2*cell] = mob[0] / (mob[0] + mob[1]);
|
|
fractional_flows[2*cell + 1] = mob[1] / (mob[0] + mob[1]);
|
|
}
|
|
}
|
|
|
|
|
|
/// Computes the fractional flow for each cell in the cells argument
|
|
/// @param[in] props rock and fluid properties
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] cells cells with which the saturation values are associated
|
|
/// @param[in] p pressure (one value per cell)
|
|
/// @param[in] z surface-volume values (for all P phases)
|
|
/// @param[in] s saturation values (for all phases)
|
|
/// @param[in] c concentration values
|
|
/// @param[in] cmax max polymer concentration experienced by cell
|
|
/// @param[out] fractional_flow the fractional flow for each phase for each cell.
|
|
void computeFractionalFlow(const Opm::BlackoilPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const std::vector<int>& cells,
|
|
const std::vector<double>& p,
|
|
const std::vector<double>& T,
|
|
const std::vector<double>& z,
|
|
const std::vector<double>& s,
|
|
const std::vector<double>& c,
|
|
const std::vector<double>& cmax,
|
|
std::vector<double>& fractional_flows)
|
|
{
|
|
int num_cells = cells.size();
|
|
int num_phases = props.numPhases();
|
|
if (num_phases != 2) {
|
|
OPM_THROW(std::runtime_error, "computeFractionalFlow() assumes 2 phases.");
|
|
}
|
|
fractional_flows.resize(num_cells*num_phases);
|
|
assert(int(s.size()) == num_cells*num_phases);
|
|
std::vector<double> kr(num_cells*num_phases);
|
|
props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0);
|
|
std::vector<double> mu(num_cells*num_phases);
|
|
props.viscosity(num_cells, &p[0], &T[0], &z[0], &cells[0], &mu[0], 0);
|
|
double mob[2]; // here we assume num_phases=2
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double* kr_cell = &kr[2*cell];
|
|
double* mu_cell = &mu[2*cell];
|
|
polyprops.effectiveMobilities(c[cell], cmax[cell], mu_cell, kr_cell, mob);
|
|
fractional_flows[2*cell] = mob[0] / (mob[0] + mob[1]);
|
|
fractional_flows[2*cell + 1] = mob[1] / (mob[0] + mob[1]);
|
|
}
|
|
}
|
|
|
|
|
|
/// @brief Computes injected and produced volumes of all phases,
|
|
/// and injected and produced polymer mass.
|
|
/// Note 1: assumes that only the first phase is injected.
|
|
/// Note 2: assumes that transport has been done with an
|
|
/// implicit method, i.e. that the current state
|
|
/// gives the mobilities used for the preceding timestep.
|
|
/// @param[in] props fluid and rock properties.
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] state state variables (pressure, fluxes etc.)
|
|
/// @param[in] src if < 0: total reservoir volume outflow,
|
|
/// if > 0: first phase reservoir volume inflow.
|
|
/// @param[in] inj_c injected concentration by cell
|
|
/// @param[in] dt timestep used
|
|
/// @param[out] injected must point to a valid array with P elements,
|
|
/// where P = s.size()/src.size().
|
|
/// @param[out] produced must also point to a valid array with P elements.
|
|
/// @param[out] polyinj injected mass of polymer
|
|
/// @param[out] polyprod produced mass of polymer
|
|
void computeInjectedProduced(const IncompPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const PolymerState& state,
|
|
const std::vector<double>& transport_src,
|
|
const std::vector<double>& inj_c,
|
|
const double dt,
|
|
double* injected,
|
|
double* produced,
|
|
double& polyinj,
|
|
double& polyprod)
|
|
{
|
|
|
|
const int num_cells = transport_src.size();
|
|
if (props.numCells() != num_cells) {
|
|
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
|
|
}
|
|
const int np = props.numPhases();
|
|
if (int(state.saturation().size()) != num_cells*np) {
|
|
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
|
|
}
|
|
const std::vector<double>& s = state.saturation();
|
|
const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
|
|
const std::vector<double>& cmax = state.getCellData( state.CMAX );
|
|
std::fill(injected, injected + np, 0.0);
|
|
std::fill(produced, produced + np, 0.0);
|
|
polyinj = 0.0;
|
|
polyprod = 0.0;
|
|
const double* visc = props.viscosity();
|
|
std::vector<double> kr_cell(np);
|
|
double mob[2];
|
|
double mc;
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
if (transport_src[cell] > 0.0) {
|
|
injected[0] += transport_src[cell]*dt;
|
|
polyinj += transport_src[cell]*dt*inj_c[cell];
|
|
} else if (transport_src[cell] < 0.0) {
|
|
const double flux = -transport_src[cell]*dt;
|
|
const double* sat = &s[np*cell];
|
|
props.relperm(1, sat, &cell, &kr_cell[0], 0);
|
|
polyprops.effectiveMobilities(c[cell], cmax[cell], visc,
|
|
&kr_cell[0], mob);
|
|
double totmob = mob[0] + mob[1];
|
|
for (int p = 0; p < np; ++p) {
|
|
produced[p] += (mob[p]/totmob)*flux;
|
|
}
|
|
polyprops.computeMc(c[cell], mc);
|
|
polyprod += (mob[0]/totmob)*flux*mc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// @brief Computes injected and produced volumes of all phases,
|
|
/// and injected and produced polymer mass - in the compressible case.
|
|
/// Note 1: assumes that only the first phase is injected.
|
|
/// Note 2: assumes that transport has been done with an
|
|
/// implicit method, i.e. that the current state
|
|
/// gives the mobilities used for the preceding timestep.
|
|
/// @param[in] props fluid and rock properties.
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] state state variables (pressure, fluxes etc.)
|
|
/// @param[in] transport_src if < 0: total reservoir volume outflow,
|
|
/// if > 0: first phase *surface volume* inflow.
|
|
/// @param[in] inj_c injected concentration by cell
|
|
/// @param[in] dt timestep used
|
|
/// @param[out] injected must point to a valid array with P elements,
|
|
/// where P = s.size()/transport_src.size().
|
|
/// @param[out] produced must also point to a valid array with P elements.
|
|
/// @param[out] polyinj injected mass of polymer
|
|
/// @param[out] polyprod produced mass of polymer
|
|
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const PolymerBlackoilState& state,
|
|
const std::vector<double>& transport_src,
|
|
const std::vector<double>& inj_c,
|
|
const double dt,
|
|
double* injected,
|
|
double* produced,
|
|
double& polyinj,
|
|
double& polyprod)
|
|
{
|
|
const int num_cells = transport_src.size();
|
|
if (props.numCells() != num_cells) {
|
|
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
|
|
}
|
|
const int np = props.numPhases();
|
|
if (int(state.saturation().size()) != num_cells*np) {
|
|
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
|
|
}
|
|
const std::vector<double>& press = state.pressure();
|
|
const std::vector<double>& temp = state.temperature();
|
|
const std::vector<double>& s = state.saturation();
|
|
const std::vector<double>& z = state.surfacevol();
|
|
const std::vector<double>& c = state.getCellData( state.CONCENTRATION );
|
|
const std::vector<double>& cmax = state.getCellData( state.CMAX );
|
|
std::fill(injected, injected + np, 0.0);
|
|
std::fill(produced, produced + np, 0.0);
|
|
polyinj = 0.0;
|
|
polyprod = 0.0;
|
|
std::vector<double> visc(np);
|
|
std::vector<double> kr_cell(np);
|
|
std::vector<double> mob(np);
|
|
std::vector<double> A(np*np);
|
|
std::vector<double> prod_resv_phase(np);
|
|
std::vector<double> prod_surfvol(np);
|
|
double mc;
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
if (transport_src[cell] > 0.0) {
|
|
// Inflowing transport source is a surface volume flux
|
|
// for the first phase.
|
|
injected[0] += transport_src[cell]*dt;
|
|
polyinj += transport_src[cell]*dt*inj_c[cell];
|
|
} else if (transport_src[cell] < 0.0) {
|
|
// Outflowing transport source is a total reservoir
|
|
// volume flux.
|
|
const double flux = -transport_src[cell]*dt;
|
|
const double* sat = &s[np*cell];
|
|
props.relperm(1, sat, &cell, &kr_cell[0], 0);
|
|
props.viscosity(1, &press[cell], &temp[cell], &z[np*cell], &cell, &visc[0], 0);
|
|
props.matrix(1, &press[cell], &temp[cell], &z[np*cell], &cell, &A[0], 0);
|
|
polyprops.effectiveMobilities(c[cell], cmax[cell], &visc[0],
|
|
&kr_cell[0], &mob[0]);
|
|
double totmob = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
totmob += mob[p];
|
|
}
|
|
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
|
|
for (int p = 0; p < np; ++p) {
|
|
prod_resv_phase[p] = (mob[p]/totmob)*flux;
|
|
for (int q = 0; q < np; ++q) {
|
|
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
|
|
}
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
produced[p] += prod_surfvol[p];
|
|
}
|
|
polyprops.computeMc(c[cell], mc);
|
|
polyprod += produced[0]*mc;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/// @brief Computes total polymer mass over all grid cells.
|
|
/// @param[in] pv the pore volume by cell.
|
|
/// @param[in] s saturation values (for all P phases)
|
|
/// @param[in] c polymer concentration
|
|
/// @param[in] dps dead pore space
|
|
/// @return total polymer mass in grid.
|
|
double computePolymerMass(const std::vector<double>& pv,
|
|
const std::vector<double>& s,
|
|
const std::vector<double>& c,
|
|
const double dps)
|
|
{
|
|
const int num_cells = pv.size();
|
|
const int np = s.size()/pv.size();
|
|
if (int(s.size()) != num_cells*np) {
|
|
OPM_THROW(std::runtime_error, "Sizes of s and pv vectors do not match.");
|
|
}
|
|
double polymass = 0.0;
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
polymass += c[cell]*s[np*cell + 0]*pv[cell]*(1 - dps);
|
|
}
|
|
return polymass;
|
|
}
|
|
|
|
|
|
|
|
/// @brief Computes total absorbed polymer mass over all grid cells.
|
|
/// @param[in] props fluid and rock properties.
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] pv the pore volume by cell.
|
|
/// @param[in] cmax max polymer concentration for cell
|
|
/// @return total absorbed polymer mass.
|
|
double computePolymerAdsorbed(const IncompPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const std::vector<double>& pv,
|
|
const std::vector<double>& cmax)
|
|
{
|
|
const int num_cells = pv.size();
|
|
const double rhor = polyprops.rockDensity();
|
|
const double* poro = props.porosity();
|
|
double abs_mass = 0.0;
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double c_ads;
|
|
polyprops.simpleAdsorption(cmax[cell], c_ads);
|
|
abs_mass += c_ads*pv[cell]*((1.0 - poro[cell])/poro[cell])*rhor;
|
|
}
|
|
return abs_mass;
|
|
}
|
|
|
|
/// @brief Computes total absorbed polymer mass over all grid cells.
|
|
/// With compressibility
|
|
/// @param[in] grid grid
|
|
/// @param[in] props fluid and rock properties.
|
|
/// @param[in] polyprops polymer properties
|
|
/// @param[in] state fluid state variable
|
|
/// @param[in] rock_comp rock compressibility (depends on pressure)
|
|
/// @return total absorbed polymer mass.
|
|
double computePolymerAdsorbed(const UnstructuredGrid& grid,
|
|
const BlackoilPropertiesInterface& props,
|
|
const Opm::PolymerProperties& polyprops,
|
|
const PolymerBlackoilState& state,
|
|
const RockCompressibility* rock_comp
|
|
)
|
|
{
|
|
const int num_cells = props.numCells();
|
|
const double rhor = polyprops.rockDensity();
|
|
std::vector<double> porosity;
|
|
if (rock_comp && rock_comp->isActive()) {
|
|
computePorosity(grid, props.porosity(), *rock_comp, state.pressure(), porosity);
|
|
} else {
|
|
porosity.assign(props.porosity(), props.porosity() + num_cells);
|
|
}
|
|
double abs_mass = 0.0;
|
|
const std::vector<double>& cmax = state.getCellData( state.CMAX );
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
double c_ads;
|
|
polyprops.simpleAdsorption(cmax[cell], c_ads);
|
|
abs_mass += c_ads*grid.cell_volumes[cell]*(1.0 - porosity[cell])*rhor;
|
|
}
|
|
return abs_mass;
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|