Files
opm-simulators/examples/sim_2p_incomp_ad.cpp
Andreas Lauser 42ec0ca3c3 do not explicitly pass the permeability to the well model anymore
this information is already part of the EclipseState. The reason why
this should IMO be avoided is that this enforces an implementation
detail (ordering of the permeability matrices) of the simulator on the
well model. If this needs to be done for performance reasons, IMO it
would be smarter to pass an array of matrices instead of passing a raw
array of doubles.  I doubt that this is necessary, though: completing
the full Norne deck takes about 0.25 seconds longer on my machine,
that's substantially less than 0.1% of the total runtime.
2017-01-27 13:06:09 +01:00

312 lines
12 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/props/IncompPropertiesBasic.hpp>
#include <opm/core/props/IncompPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/autodiff/SimulatorIncompTwophaseAd.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <boost/filesystem.hpp>
#include <memory>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
#include <fstream>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
#if ! HAVE_SUITESPARSE_UMFPACK_H
// This is an extra check to intercept a potentially invalid request for the
// implicit transport solver as early as possible for the user.
{
const std::string transport_solver_type
= param.getDefault<std::string>("transport_solver_type", "ad");
if (transport_solver_type == "implicit") {
OPM_THROW(std::runtime_error, "Cannot use implicit transport solver without UMFPACK. "
"Either reconfigure opm-core with SuiteSparse/UMFPACK support and recompile, "
"or use the reordering solver (transport_solver_type=reorder).");
}
}
#endif
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
Opm::Parser parser;
std::unique_ptr<GridManager> grid;
std::unique_ptr<IncompPropertiesInterface> props;
std::unique_ptr<RockCompressibility> rock_comp;
std::unique_ptr<TwophaseState> state;
std::shared_ptr< EclipseState > eclipseState;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
Opm::ParseContext parseContext;
auto deck = parser.parseFile(deck_filename, parseContext);
eclipseState.reset(new EclipseState(deck , parseContext));
// Grid init
grid.reset(new GridManager(eclipseState->getInputGrid()));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init
props.reset(new IncompPropertiesFromDeck(deck, *eclipseState, ug_grid));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
state.reset( new TwophaseState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(*eclipseState));
// Gravity.
gravity[2] = deck.hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(ug_grid, *props, param, gravity[2], *state);
} else {
initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
}
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init.
props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));
state.reset( new TwophaseState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(ug_grid, *props, param, gravity[2], *state);
}
}
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
std::cout << "\n\n================ Starting main simulation loop ===============\n";
SimulatorReport rep;
if (!use_deck) {
// Simple simulation without a deck.
WellsManager wells; // no wells.
SimulatorIncompTwophaseAd simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTimer simtimer;
simtimer.init(param);
warnIfUnusedParams(param);
WellState well_state;
well_state.init(0, *state);
rep = simulator.run(simtimer, *state, well_state);
} else {
// With a deck, we may have more report steps etc.
WellState well_state;
const auto& timeMap = eclipseState->getSchedule().getTimeMap();
SimulatorTimer simtimer;
for (size_t reportStepIdx = 0; reportStepIdx < timeMap.numTimesteps(); ++reportStepIdx) {
// Report on start of report step.
std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------"
<< "\n (number of steps left: "
<< timeMap.numTimesteps() - reportStepIdx << ")\n\n" << std::flush;
// Create new wells, well_state
WellsManager wells(*eclipseState , reportStepIdx , *grid->c_grid());
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every report step,
// since number of wells may change etc.
if (reportStepIdx == 0) {
well_state.init(wells.c_wells(), *state);
}
simtimer.setCurrentStepNum(reportStepIdx);
// Create and run simulator.
SimulatorIncompTwophaseAd simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
src,
bcs.c_bcs(),
linsolver,
grav);
if (reportStepIdx == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);
if (output) {
epoch_rep.reportParam(epoch_os);
}
// Update total timing report and remember step number.
rep += epoch_rep;
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
rep.reportParam(tot_os);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}