opm-simulators/opm/autodiff/AquiferCarterTracy.hpp
2018-06-04 15:28:56 +02:00

366 lines
16 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <vector>
#include <algorithm>
namespace Opm
{
template<typename TypeTag>
class AquiferCarterTracy
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem> FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
AquiferCarterTracy( const AquiferCT::AQUCT_data& aquct_data,
const Aquancon::AquanconOutput& connection,
Simulator& ebosSimulator )
: ebos_simulator_ (ebosSimulator),
aquct_data_ (aquct_data),
gravity_ (ebos_simulator_.problem().gravity()[2])
{
initQuantities(connection);
}
inline void assembleAquiferEq(const SimulatorTimerInterface& timer)
{
auto& ebosJac = ebos_simulator_.model().linearizer().matrix();
auto& ebosResid = ebos_simulator_.model().linearizer().residual();
size_t cellID;
for ( size_t idx = 0; idx < cell_idx_.size(); ++idx )
{
Eval qinflow = 0.0;
cellID = cell_idx_.at(idx);
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellID, /*timeIdx=*/ 0));
// This is the pressure at td + dt
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, timer);
qinflow = Qai_.at(idx);
ebosResid[cellID][waterCompIdx] -= qinflow.value();
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx)
{
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cellID][cellID][waterCompIdx][pvIdx] -= qinflow.derivative(pvIdx);
}
}
}
inline void beforeTimeStep(const SimulatorTimerInterface& timer)
{
auto cellID = cell_idx_.begin();
size_t idx;
for ( idx = 0; cellID != cell_idx_.end(); ++cellID, ++idx )
{
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
updateCellPressure(pressure_previous_ ,idx,intQuants);
}
}
inline void afterTimeStep(const SimulatorTimerInterface& timer)
{
for (auto Qai = Qai_.begin(); Qai != Qai_.end(); ++Qai)
{
W_flux_ += (*Qai)*timer.currentStepLength();
}
}
private:
Simulator& ebos_simulator_;
// Grid variables
std::vector<size_t> cell_idx_;
std::vector<Scalar> faceArea_connected_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar mu_w_ , //water viscosity
beta_ , // Influx constant
Tc_ , // Time constant
pa0_ , // initial aquifer pressure
gravity_ ; // gravitational acceleration
Eval W_flux_;
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// We use the opm-common numeric linear interpolator
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
}
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
W_flux_ = 0.;
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
initializeConnections(connection);
calculateAquiferCondition();
calculateAquiferConstants();
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
}
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
inline Scalar dpai(int idx)
{
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0) - pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const SimulatorTimerInterface& timer)
{
const Scalar td_plus_dt = (timer.currentStepLength() + timer.simulationTimeElapsed()) / Tc_;
const Scalar td = timer.simulationTimeElapsed() / Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
a = 1.0/Tc_ * ( (beta_ * dpai(idx)) - (W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta_ / (Tc_ * ( PItd - td*PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const SimulatorTimerInterface& timer)
{
Scalar a, b;
calculateEqnConstants(a,b,idx,timer);
Qai_.at(idx) = alphai_.at(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx) ) );
}
inline void calculateAquiferConstants()
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h
* aquct_data_.theta * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
Tc_ = mu_w_ * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o
/ ( aquct_data_.k_a * aquct_data_.c1 );
}
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
inline void initializeConnections(const Aquancon::AquanconOutput& connection)
{
const auto& eclState = ebos_simulator_.vanguard().eclState();
const auto& ugrid = ebos_simulator_.vanguard().grid();
const auto& grid = eclState.getInputGrid();
cell_idx_ = connection.global_index;
auto globalCellIdx = ugrid.globalCell();
assert( cell_idx_ == connection.global_index);
assert( (cell_idx_.size() == connection.influx_coeff.size()) );
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
// We hack the cell depth values for now. We can actually get it from elementcontext pos
cell_depth_.resize(cell_idx_.size(), aquct_data_.d0);
alphai_.resize(cell_idx_.size(), 1.0);
faceArea_connected_.resize(cell_idx_.size(),0.0);
Scalar faceArea;
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::AutoDiffGrid::faceCells(ugrid);
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
auto cellFacesRange = cell2Faces[cell_idx_.at(idx)];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
faceArea = (faceCells(faceIdx,0)*faceCells(faceIdx,1) > 0)? 0. : Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
faceArea_connected_.at(idx) = faceArea;
denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) );
}
}
auto cellCenter = grid.getCellCenter(cell_idx_.at(idx));
cell_depth_.at(idx) = cellCenter[2];
}
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
alphai_.at(idx) = ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas;
}
}
inline void calculateAquiferCondition()
{
int pvttableIdx = aquct_data_.pvttableID - 1;
rhow_.resize(cell_idx_.size(),0.);
if (aquct_data_.p0 < 1.0)
{
pa0_ = calculateReservoirEquilibrium();
}
else
{
pa0_ = aquct_data_.p0;
}
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( ebos_simulator_.model().cachedIntensiveQuantities(cell_idx_.at(0), /*timeIdx=*/ 0)->fluidState() );
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
mu_w_ = mu_w_aquifer.value();
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
inline Scalar calculateReservoirEquilibrium()
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
size_t cellIDx = cell_idx_.at(idx);
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellIDx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
rhow_.at(idx) = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - aquct_data_.d0))*alphai_.at(idx) );
}
// We take the average of the calculated equilibrium pressures.
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
return aquifer_pres_avg;
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif