mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 16:51:00 -06:00
607 lines
26 KiB
C++
607 lines
26 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif // HAVE_CONFIG_H
|
|
|
|
#include <opm/autodiff/SimulatorIncompTwophaseAd.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
#include <opm/common/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/core/pressure/IncompTpfa.hpp>
|
|
|
|
#include <opm/grid/UnstructuredGrid.h>
|
|
#include <opm/core/wells.h>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/core/pressure/flow_bc.h>
|
|
|
|
#include <opm/core/simulator/SimulatorReport.hpp>
|
|
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
|
|
#include <opm/grid/utility/StopWatch.hpp>
|
|
#include <opm/core/utility/DataMap.hpp>
|
|
#include <opm/simulators/vtk/writeVtkData.hpp>
|
|
#include <opm/core/utility/miscUtilities.hpp>
|
|
|
|
#include <opm/core/wells/WellsManager.hpp>
|
|
|
|
#include <opm/core/props/IncompPropertiesInterface.hpp>
|
|
#include <opm/core/props/rock/RockCompressibility.hpp>
|
|
|
|
#include <opm/core/simulator/TwophaseState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
|
|
#include <opm/autodiff/TransportSolverTwophaseAd.hpp>
|
|
#include <opm/simulators/ensureDirectoryExists.hpp>
|
|
|
|
#include <boost/filesystem.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
class SimulatorIncompTwophaseAd::Impl
|
|
{
|
|
public:
|
|
Impl(const ParameterGroup& param,
|
|
const UnstructuredGrid& grid,
|
|
const IncompPropertiesInterface& props,
|
|
const RockCompressibility* rock_comp_props,
|
|
WellsManager& wells_manager,
|
|
const std::vector<double>& src,
|
|
const FlowBoundaryConditions* bcs,
|
|
LinearSolverInterface& linsolver,
|
|
const double* gravity);
|
|
|
|
SimulatorReport run(SimulatorTimer& timer,
|
|
TwophaseState& state,
|
|
WellState& well_state);
|
|
|
|
private:
|
|
// Data.
|
|
// Parameters for output.
|
|
bool output_;
|
|
bool output_vtk_;
|
|
std::string output_dir_;
|
|
int output_interval_;
|
|
// Parameters for well control
|
|
bool check_well_controls_;
|
|
int max_well_control_iterations_;
|
|
// Parameters for transport solver.
|
|
int num_transport_substeps_;
|
|
std::string transport_solver_type_;
|
|
bool use_segregation_split_;
|
|
// Observed objects.
|
|
const UnstructuredGrid& grid_;
|
|
const IncompPropertiesInterface& props_;
|
|
const RockCompressibility* rock_comp_props_;
|
|
WellsManager& wells_manager_;
|
|
const Wells* wells_;
|
|
const std::vector<double>& src_;
|
|
const FlowBoundaryConditions* bcs_;
|
|
// Solvers
|
|
IncompTpfa psolver_;
|
|
std::unique_ptr<TransportSolverTwophaseInterface> tsolver_;
|
|
// Misc. data
|
|
std::vector<int> allcells_;
|
|
};
|
|
|
|
|
|
|
|
|
|
SimulatorIncompTwophaseAd::SimulatorIncompTwophaseAd(const ParameterGroup& param,
|
|
const UnstructuredGrid& grid,
|
|
const IncompPropertiesInterface& props,
|
|
const RockCompressibility* rock_comp_props,
|
|
WellsManager& wells_manager,
|
|
const std::vector<double>& src,
|
|
const FlowBoundaryConditions* bcs,
|
|
LinearSolverInterface& linsolver,
|
|
const double* gravity)
|
|
{
|
|
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, src, bcs, linsolver, gravity));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
SimulatorReport SimulatorIncompTwophaseAd::run(SimulatorTimer& timer,
|
|
TwophaseState& state,
|
|
WellState& well_state)
|
|
{
|
|
return pimpl_->run(timer, state, well_state);
|
|
}
|
|
|
|
static void reportVolumes(std::ostream &os, double satvol[2], double tot_porevol_init,
|
|
double tot_injected[2], double tot_produced[2],
|
|
double injected[2], double produced[2],
|
|
double init_satvol[2])
|
|
{
|
|
os.precision(5);
|
|
const int width = 18;
|
|
os << "\nVolume balance report (all numbers relative to total pore volume).\n";
|
|
os << " Saturated volumes: "
|
|
<< std::setw(width) << satvol[0]/tot_porevol_init
|
|
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
|
|
os << " Injected volumes: "
|
|
<< std::setw(width) << injected[0]/tot_porevol_init
|
|
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
|
|
os << " Produced volumes: "
|
|
<< std::setw(width) << produced[0]/tot_porevol_init
|
|
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
|
|
os << " Total inj volumes: "
|
|
<< std::setw(width) << tot_injected[0]/tot_porevol_init
|
|
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
|
|
os << " Total prod volumes: "
|
|
<< std::setw(width) << tot_produced[0]/tot_porevol_init
|
|
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
|
|
os << " In-place + prod - inj: "
|
|
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
|
|
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
|
|
os << " Init - now - pr + inj: "
|
|
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
|
|
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
|
|
<< std::endl;
|
|
os.precision(8);
|
|
}
|
|
|
|
static void outputStateVtk(const UnstructuredGrid& grid,
|
|
const Opm::TwophaseState& state,
|
|
const int step,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write data in VTK format.
|
|
std::ostringstream vtkfilename;
|
|
vtkfilename << output_dir << "/vtk_files";
|
|
ensureDirectoryExists(vtkfilename.str());
|
|
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
|
std::ofstream vtkfile(vtkfilename.str().c_str());
|
|
if (!vtkfile) {
|
|
OPM_THROW(std::runtime_error, "Failed to open " << vtkfilename.str());
|
|
}
|
|
Opm::DataMap dm;
|
|
dm["saturation"] = &state.saturation();
|
|
dm["pressure"] = &state.pressure();
|
|
std::vector<double> cell_velocity;
|
|
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
|
dm["velocity"] = &cell_velocity;
|
|
Opm::writeVtkData(grid, dm, vtkfile);
|
|
}
|
|
|
|
static void outputVectorMatlab(const std::string& name,
|
|
const std::vector<int>& vec,
|
|
const int step,
|
|
const std::string& output_dir)
|
|
{
|
|
std::ostringstream fname;
|
|
fname << output_dir << "/" << name;
|
|
ensureDirectoryExists(fname.str());
|
|
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
|
|
std::ofstream file(fname.str().c_str());
|
|
if (!file) {
|
|
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
|
|
}
|
|
std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(file, "\n"));
|
|
}
|
|
|
|
static void outputStateMatlab(const UnstructuredGrid& grid,
|
|
const Opm::TwophaseState& state,
|
|
const int step,
|
|
const std::string& output_dir)
|
|
{
|
|
Opm::DataMap dm;
|
|
dm["saturation"] = &state.saturation();
|
|
dm["pressure"] = &state.pressure();
|
|
std::vector<double> cell_velocity;
|
|
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
|
dm["velocity"] = &cell_velocity;
|
|
|
|
// Write data (not grid) in Matlab format
|
|
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
|
std::ostringstream fname;
|
|
fname << output_dir << "/" << it->first;
|
|
ensureDirectoryExists(fname.str());
|
|
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
|
|
std::ofstream file(fname.str().c_str());
|
|
if (!file) {
|
|
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
|
|
}
|
|
file.precision(15);
|
|
const std::vector<double>& d = *(it->second);
|
|
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
|
}
|
|
}
|
|
|
|
|
|
static void outputWaterCut(const Opm::Watercut& watercut,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write water cut curve.
|
|
std::string fname = output_dir + "/watercut.txt";
|
|
std::ofstream os(fname.c_str());
|
|
if (!os) {
|
|
OPM_THROW(std::runtime_error, "Failed to open " << fname);
|
|
}
|
|
watercut.write(os);
|
|
}
|
|
|
|
|
|
static void outputWellReport(const Opm::WellReport& wellreport,
|
|
const std::string& output_dir)
|
|
{
|
|
// Write well report.
|
|
std::string fname = output_dir + "/wellreport.txt";
|
|
std::ofstream os(fname.c_str());
|
|
if (!os) {
|
|
OPM_THROW(std::runtime_error, "Failed to open " << fname);
|
|
}
|
|
wellreport.write(os);
|
|
}
|
|
|
|
|
|
static bool allNeumannBCs(const FlowBoundaryConditions* bcs)
|
|
{
|
|
if (bcs == NULL) {
|
|
return true;
|
|
} else {
|
|
return std::find(bcs->type, bcs->type + bcs->nbc, BC_PRESSURE)
|
|
== bcs->type + bcs->nbc;
|
|
}
|
|
}
|
|
|
|
|
|
static bool allRateWells(const Wells* wells)
|
|
{
|
|
if (wells == NULL) {
|
|
return true;
|
|
}
|
|
const int nw = wells->number_of_wells;
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells->ctrls[w];
|
|
if (well_controls_well_is_open( wc )) {
|
|
if (well_controls_get_current_type(wc) == BHP ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
SimulatorIncompTwophaseAd::Impl::Impl(const ParameterGroup& param,
|
|
const UnstructuredGrid& grid,
|
|
const IncompPropertiesInterface& props,
|
|
const RockCompressibility* rock_comp_props,
|
|
WellsManager& wells_manager,
|
|
const std::vector<double>& src,
|
|
const FlowBoundaryConditions* bcs,
|
|
LinearSolverInterface& linsolver,
|
|
const double* gravity)
|
|
: transport_solver_type_(param.getDefault<std::string>("transport_solver_type", "ad")),
|
|
use_segregation_split_(param.getDefault("use_segregation_split", false)),
|
|
grid_(grid),
|
|
props_(props),
|
|
rock_comp_props_(rock_comp_props),
|
|
wells_manager_(wells_manager),
|
|
wells_(wells_manager.c_wells()),
|
|
src_(src),
|
|
bcs_(bcs),
|
|
psolver_(grid, props, rock_comp_props, linsolver,
|
|
param.getDefault("nl_pressure_residual_tolerance", 0.0),
|
|
param.getDefault("nl_pressure_change_tolerance", 1.0),
|
|
param.getDefault("nl_pressure_maxiter", 10),
|
|
gravity, wells_manager.c_wells(), src, bcs)
|
|
{
|
|
// Initialize transport solver.
|
|
if (transport_solver_type_ == "reorder") {
|
|
tsolver_.reset(new Opm::TransportSolverTwophaseReorder(grid,
|
|
props,
|
|
use_segregation_split_ ? gravity : NULL,
|
|
param.getDefault("nl_tolerance", 1e-9),
|
|
param.getDefault("nl_maxiter", 30)));
|
|
|
|
} else if (transport_solver_type_ == "ad") {
|
|
if (rock_comp_props && rock_comp_props->isActive()) {
|
|
OPM_THROW(std::runtime_error, "The implicit ad transport solver cannot handle rock compressibility.");
|
|
}
|
|
if (use_segregation_split_) {
|
|
OPM_THROW(std::runtime_error, "The implicit ad transport solver is not set up to use segregation splitting.");
|
|
}
|
|
std::vector<double> porevol;
|
|
computePorevolume(grid, props.porosity(), porevol);
|
|
tsolver_.reset(new Opm::TransportSolverTwophaseAd(grid,
|
|
props,
|
|
linsolver,
|
|
gravity,
|
|
param));
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Unknown transport solver type: " << transport_solver_type_);
|
|
}
|
|
|
|
// For output.
|
|
output_ = param.getDefault("output", true);
|
|
if (output_) {
|
|
output_vtk_ = param.getDefault("output_vtk", true);
|
|
output_dir_ = param.getDefault("output_dir", std::string("output"));
|
|
// Ensure that output dir exists
|
|
ensureDirectoryExists(output_dir_);
|
|
output_interval_ = param.getDefault("output_interval", 1);
|
|
}
|
|
|
|
// Well control related init.
|
|
check_well_controls_ = param.getDefault("check_well_controls", false);
|
|
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
|
|
|
|
// Transport related init.
|
|
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
|
|
|
|
// Misc init.
|
|
const int num_cells = Opm::AutoDiffGrid::numCells(grid);
|
|
allcells_.resize(num_cells);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
allcells_[cell] = cell;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
SimulatorReport SimulatorIncompTwophaseAd::Impl::run(SimulatorTimer& timer,
|
|
TwophaseState& state,
|
|
WellState& well_state)
|
|
{
|
|
std::vector<double> transport_src;
|
|
|
|
// Initialisation.
|
|
std::vector<double> porevol;
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
|
|
} else {
|
|
computePorevolume(grid_, props_.porosity(), porevol);
|
|
}
|
|
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
|
|
std::vector<double> initial_porevol = porevol;
|
|
|
|
// Main simulation loop.
|
|
Opm::time::StopWatch pressure_timer;
|
|
double ptime = 0.0;
|
|
Opm::time::StopWatch transport_timer;
|
|
double ttime = 0.0;
|
|
Opm::time::StopWatch step_timer;
|
|
Opm::time::StopWatch total_timer;
|
|
total_timer.start();
|
|
double init_satvol[2] = { 0.0 };
|
|
double satvol[2] = { 0.0 };
|
|
double tot_injected[2] = { 0.0 };
|
|
double tot_produced[2] = { 0.0 };
|
|
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
|
|
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
|
|
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
|
|
Opm::Watercut watercut;
|
|
watercut.push(0.0, 0.0, 0.0);
|
|
Opm::WellReport wellreport;
|
|
std::vector<double> fractional_flows;
|
|
std::vector<double> well_resflows_phase;
|
|
if (wells_) {
|
|
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
|
|
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
|
|
}
|
|
std::fstream tstep_os;
|
|
if (output_) {
|
|
std::string filename = output_dir_ + "/step_timing.param";
|
|
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
|
|
}
|
|
for (; !timer.done(); ++timer) {
|
|
// Report timestep and (optionally) write state to disk.
|
|
step_timer.start();
|
|
timer.report(std::cout);
|
|
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
|
|
if (output_vtk_) {
|
|
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
|
}
|
|
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
|
if (transport_solver_type_ == "reorder") {
|
|
// This use of dynamic_cast is not ideal, but should be safe.
|
|
outputVectorMatlab(std::string("reorder_it"),
|
|
dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
|
|
timer.currentStepNum(), output_dir_);
|
|
}
|
|
}
|
|
|
|
SimulatorReport sreport;
|
|
|
|
// Solve pressure equation.
|
|
if (check_well_controls_) {
|
|
computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
|
|
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
|
|
}
|
|
bool well_control_passed = !check_well_controls_;
|
|
int well_control_iteration = 0;
|
|
do {
|
|
// Run solver.
|
|
pressure_timer.start();
|
|
std::vector<double> initial_pressure = state.pressure();
|
|
psolver_.solve(timer.currentStepLength(), state, well_state);
|
|
|
|
// Renormalize pressure if rock is incompressible, and
|
|
// there are no pressure conditions (bcs or wells).
|
|
// It is deemed sufficient for now to renormalize
|
|
// using geometric volume instead of pore volume.
|
|
if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
|
|
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
|
|
// Compute average pressures of previous and last
|
|
// step, and total volume.
|
|
double av_prev_press = 0.0;
|
|
double av_press = 0.0;
|
|
double tot_vol = 0.0;
|
|
const int num_cells = Opm::AutoDiffGrid::numCells(grid_);
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
av_prev_press += initial_pressure[cell]*
|
|
Opm::AutoDiffGrid::cellVolume(grid_, cell);
|
|
av_press += state.pressure()[cell]*
|
|
Opm::AutoDiffGrid::cellVolume(grid_, cell);
|
|
tot_vol += Opm::AutoDiffGrid::cellVolume(grid_, cell);
|
|
}
|
|
// Renormalization constant
|
|
const double ren_const = (av_prev_press - av_press)/tot_vol;
|
|
for (int cell = 0; cell < num_cells; ++cell) {
|
|
state.pressure()[cell] += ren_const;
|
|
}
|
|
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
|
|
for (int well = 0; well < num_wells; ++well) {
|
|
well_state.bhp()[well] += ren_const;
|
|
}
|
|
}
|
|
|
|
// Stop timer and report.
|
|
pressure_timer.stop();
|
|
double pt = pressure_timer.secsSinceStart();
|
|
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
|
ptime += pt;
|
|
sreport.pressure_time = pt;
|
|
|
|
// Optionally, check if well controls are satisfied.
|
|
if (check_well_controls_) {
|
|
Opm::computePhaseFlowRatesPerWell(*wells_,
|
|
well_state.perfRates(),
|
|
fractional_flows,
|
|
well_resflows_phase);
|
|
std::cout << "Checking well conditions." << std::endl;
|
|
// For testing we set surface := reservoir
|
|
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
|
|
++well_control_iteration;
|
|
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
|
|
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
|
|
}
|
|
if (!well_control_passed) {
|
|
std::cout << "Well controls not passed, solving again." << std::endl;
|
|
} else {
|
|
std::cout << "Well conditions met." << std::endl;
|
|
}
|
|
}
|
|
} while (!well_control_passed);
|
|
|
|
// Update pore volumes if rock is compressible.
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
initial_porevol = porevol;
|
|
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
|
|
}
|
|
|
|
// Process transport sources (to include bdy terms and well flows).
|
|
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
|
|
wells_, well_state.perfRates(), transport_src);
|
|
|
|
// Solve transport.
|
|
transport_timer.start();
|
|
double stepsize = timer.currentStepLength();
|
|
if (num_transport_substeps_ != 1) {
|
|
stepsize /= double(num_transport_substeps_);
|
|
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
|
|
}
|
|
double injected[2] = { 0.0 };
|
|
double produced[2] = { 0.0 };
|
|
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
|
|
tsolver_->solve(&initial_porevol[0], &transport_src[0], stepsize, state);
|
|
|
|
double substep_injected[2] = { 0.0 };
|
|
double substep_produced[2] = { 0.0 };
|
|
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
|
|
substep_injected, substep_produced);
|
|
injected[0] += substep_injected[0];
|
|
injected[1] += substep_injected[1];
|
|
produced[0] += substep_produced[0];
|
|
produced[1] += substep_produced[1];
|
|
if (transport_solver_type_ == "reorder" && use_segregation_split_) {
|
|
// Again, unfortunate but safe use of dynamic_cast.
|
|
// Possible solution: refactor gravity solver to its own class.
|
|
dynamic_cast<TransportSolverTwophaseReorder&>(*tsolver_)
|
|
.solveGravity(&initial_porevol[0], stepsize, state);
|
|
}
|
|
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
|
|
produced[0]/(produced[0] + produced[1]),
|
|
tot_produced[0]/tot_porevol_init);
|
|
if (wells_) {
|
|
wellreport.push(props_, *wells_, state.saturation(),
|
|
timer.simulationTimeElapsed() + timer.currentStepLength(),
|
|
well_state.bhp(), well_state.perfRates());
|
|
}
|
|
}
|
|
transport_timer.stop();
|
|
double tt = transport_timer.secsSinceStart();
|
|
sreport.transport_time = tt;
|
|
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
|
ttime += tt;
|
|
// Report volume balances.
|
|
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
|
|
tot_injected[0] += injected[0];
|
|
tot_injected[1] += injected[1];
|
|
tot_produced[0] += produced[0];
|
|
tot_produced[1] += produced[1];
|
|
reportVolumes(std::cout,satvol, tot_porevol_init,
|
|
tot_injected, tot_produced,
|
|
injected, produced,
|
|
init_satvol);
|
|
sreport.total_time = step_timer.secsSinceStart();
|
|
if (output_) {
|
|
sreport.reportParam(tstep_os);
|
|
}
|
|
}
|
|
|
|
if (output_) {
|
|
if (output_vtk_) {
|
|
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
|
|
}
|
|
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
|
|
if (transport_solver_type_ == "reorder") {
|
|
// This use of dynamic_cast is not ideal, but should be safe.
|
|
outputVectorMatlab(std::string("reorder_it"),
|
|
dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
|
|
timer.currentStepNum(), output_dir_);
|
|
}
|
|
outputWaterCut(watercut, output_dir_);
|
|
if (wells_) {
|
|
outputWellReport(wellreport, output_dir_);
|
|
}
|
|
tstep_os.close();
|
|
}
|
|
|
|
total_timer.stop();
|
|
|
|
SimulatorReport report;
|
|
report.pressure_time = ptime;
|
|
report.transport_time = ttime;
|
|
report.total_time = total_timer.secsSinceStart();
|
|
return report;
|
|
}
|
|
|
|
|
|
} // namespace Opm
|