opm-simulators/opm/simulators/linalg/bda/MultisegmentWellContribution.cpp
2023-07-24 12:28:08 +02:00

122 lines
4.4 KiB
C++

/*
Copyright 2020 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h> // CMake
#include <opm/common/TimingMacros.hpp>
#if HAVE_UMFPACK
#include <dune/istl/umfpack.hh>
#endif // HAVE_UMFPACK
#include <opm/simulators/linalg/bda/MultisegmentWellContribution.hpp>
namespace Opm
{
MultisegmentWellContribution::MultisegmentWellContribution(unsigned int dim_, unsigned int dim_wells_,
unsigned int Mb_,
std::vector<double> &Bvalues, std::vector<unsigned int> &BcolIndices, std::vector<unsigned int> &BrowPointers,
unsigned int DnumBlocks_, double *Dvalues, UMFPackIndex *DcolPointers, UMFPackIndex *DrowIndices,
std::vector<double> &Cvalues)
:
dim(dim_), // size of blockvectors in vectors x and y, equal to MultisegmentWell::numEq
dim_wells(dim_wells_), // size of blocks in C, B and D, equal to MultisegmentWell::numWellEq
M(Mb_ * dim_wells), // number of rows, M == dim_wells*Mb
Mb(Mb_), // number of blockrows in C, D and B
DnumBlocks(DnumBlocks_), // number of blocks in D
// copy data for matrix D into vectors to prevent it going out of scope
Dvals(Dvalues, Dvalues + DnumBlocks * dim_wells * dim_wells),
Dcols(DcolPointers, DcolPointers + M + 1),
Drows(DrowIndices, DrowIndices + DnumBlocks * dim_wells * dim_wells)
{
Cvals = std::move(Cvalues);
Bvals = std::move(Bvalues);
Bcols = std::move(BcolIndices);
Brows = std::move(BrowPointers);
z1.resize(Mb * dim_wells);
z2.resize(Mb * dim_wells);
umfpack_di_symbolic(M, M, Dcols.data(), Drows.data(), Dvals.data(), &UMFPACK_Symbolic, nullptr, nullptr);
umfpack_di_numeric(Dcols.data(), Drows.data(), Dvals.data(), UMFPACK_Symbolic, &UMFPACK_Numeric, nullptr, nullptr);
}
MultisegmentWellContribution::~MultisegmentWellContribution()
{
umfpack_di_free_symbolic(&UMFPACK_Symbolic);
umfpack_di_free_numeric(&UMFPACK_Numeric);
}
// Apply the MultisegmentWellContribution, similar to MultisegmentWell::apply()
// h_x and h_y reside on host
// y -= (C^T * (D^-1 * (B * x)))
void MultisegmentWellContribution::apply(double *h_x, double *h_y)
{
OPM_TIMEBLOCK(apply);
// reset z1 and z2
std::fill(z1.begin(), z1.end(), 0.0);
std::fill(z2.begin(), z2.end(), 0.0);
// z1 = B * x
for (unsigned int row = 0; row < Mb; ++row) {
// for every block in the row
for (unsigned int blockID = Brows[row]; blockID < Brows[row + 1]; ++blockID) {
unsigned int colIdx = Bcols[blockID];
for (unsigned int j = 0; j < dim_wells; ++j) {
double temp = 0.0;
for (unsigned int k = 0; k < dim; ++k) {
temp += Bvals[blockID * dim * dim_wells + j * dim + k] * h_x[colIdx * dim + k];
}
z1[row * dim_wells + j] += temp;
}
}
}
// z2 = D^-1 * (B * x)
// umfpack
umfpack_di_solve(UMFPACK_A, Dcols.data(), Drows.data(), Dvals.data(), z2.data(), z1.data(), UMFPACK_Numeric, nullptr, nullptr);
// y -= (C^T * z2)
// y -= (C^T * (D^-1 * (B * x)))
for (unsigned int row = 0; row < Mb; ++row) {
// for every block in the row
for (unsigned int blockID = Brows[row]; blockID < Brows[row + 1]; ++blockID) {
unsigned int colIdx = Bcols[blockID];
for (unsigned int j = 0; j < dim; ++j) {
double temp = 0.0;
for (unsigned int k = 0; k < dim_wells; ++k) {
temp += Cvals[blockID * dim * dim_wells + j + k * dim] * z2[row * dim_wells + k];
}
h_y[colIdx * dim + j] -= temp;
}
}
}
}
#if HAVE_CUDA
void MultisegmentWellContribution::setCudaStream(cudaStream_t stream_)
{
stream = stream_;
}
#endif
} //namespace Opm