mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-24 08:20:01 -06:00
246 lines
7.9 KiB
C++
246 lines
7.9 KiB
C++
/*
|
|
Copyright 2018 Equinor
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef OPM_GRAPHCOLORING_HEADER_INCLUDED
|
|
#define OPM_GRAPHCOLORING_HEADER_INCLUDED
|
|
|
|
#include <vector>
|
|
#include <deque>
|
|
#include <tuple>
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
#include <queue>
|
|
#include <cstddef>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
namespace Detail
|
|
{
|
|
template<class Graph>
|
|
std::size_t colorGraphWelshPowell(const Graph& graph,
|
|
std::deque<typename Graph::VertexDescriptor>& orderedVertices,
|
|
std::vector<int>& colors,
|
|
int color, int noVertices)
|
|
{
|
|
std::vector<int> forbidden(noVertices, false);
|
|
std::size_t noColored = 0;
|
|
|
|
for(auto vertex = orderedVertices.begin(),
|
|
vertexEnd = orderedVertices.end();
|
|
vertex != vertexEnd; ++vertex)
|
|
{
|
|
// Skip forbidden vertices
|
|
while(vertex != vertexEnd && forbidden[*vertex])
|
|
++vertex;
|
|
if ( vertex == vertexEnd )
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Color Vertex
|
|
colors[*vertex] = color;
|
|
++noColored;
|
|
// Forbid neighors
|
|
for(auto edge = graph.beginEdges(*vertex), endEdge = graph.endEdges(*vertex);
|
|
edge != endEdge; ++edge)
|
|
{
|
|
forbidden[edge.target()] = true;
|
|
}
|
|
}
|
|
// forbidden vertices will be colored next for coloring
|
|
using Vertex = typename Graph::VertexDescriptor;
|
|
auto newEnd = std::remove_if(orderedVertices.begin(), orderedVertices.end(),
|
|
[&forbidden](const Vertex& vertex)
|
|
{
|
|
return !forbidden[vertex];
|
|
});
|
|
orderedVertices.resize(newEnd-orderedVertices.begin());
|
|
return noColored;
|
|
}
|
|
template<class Graph, class Functor>
|
|
std::size_t breadthFirstSearch(const Graph& graph, typename Graph::VertexDescriptor root,
|
|
Functor functor)
|
|
{
|
|
std::vector<int> visited(graph.maxVertex() + 1, false);
|
|
using Vertex = typename Graph::VertexDescriptor;
|
|
std::queue<Vertex> nextVertices;
|
|
std::size_t noVisited = 0;
|
|
nextVertices.push(root);
|
|
visited[root] = true; // We do not visit root.
|
|
|
|
while( !nextVertices.empty() )
|
|
{
|
|
auto current = nextVertices.front();
|
|
for(auto edge = graph.beginEdges(current),
|
|
endEdge = graph.endEdges(current);
|
|
edge != endEdge; ++edge)
|
|
{
|
|
if ( ! visited[edge.target()] )
|
|
{
|
|
visited[edge.target()] = true;
|
|
nextVertices.push(edge.target());
|
|
functor(edge.target());
|
|
++noVisited;
|
|
}
|
|
}
|
|
nextVertices.pop();
|
|
}
|
|
return noVisited;
|
|
}
|
|
} // end namespace Detail
|
|
|
|
|
|
/// \brief Color the vertices of graph.
|
|
///
|
|
/// It uses the algorithm of Welsh and Powell for this.
|
|
/// \param graph The graph to color. Must adhere to the graph interface of dune-istl.
|
|
/// \return A pair of a vector with the colors of the vertices and the number of colors
|
|
/// assigned
|
|
template<class Graph>
|
|
std::tuple<std::vector<int>, int, std::vector<std::size_t> >
|
|
colorVerticesWelshPowell(const Graph& graph)
|
|
{
|
|
using Vertex = typename Graph::VertexDescriptor;
|
|
std::deque<Vertex> orderedVertices;
|
|
auto noVertices = graph.maxVertex()+1;
|
|
std::vector<int> degrees(noVertices, 0);
|
|
int maxDegree = 0;
|
|
std::ptrdiff_t firstDegreeChange = 0;
|
|
|
|
// populate deque
|
|
for( auto vertex = graph.begin(), endVertex = graph.end();
|
|
vertex != endVertex; ++vertex)
|
|
{
|
|
auto currentVertex = *vertex;
|
|
auto& degree = degrees[currentVertex];
|
|
|
|
for(auto edge = graph.beginEdges(currentVertex),
|
|
endEdge = graph.endEdges(currentVertex);
|
|
edge != endEdge; ++edge)
|
|
{
|
|
++degree;
|
|
}
|
|
|
|
|
|
if( degree >= maxDegree )
|
|
{
|
|
orderedVertices.emplace_front(currentVertex);
|
|
++firstDegreeChange;
|
|
if(degree > maxDegree)
|
|
{
|
|
firstDegreeChange = 1;
|
|
maxDegree = degree;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
orderedVertices.emplace_back(currentVertex);
|
|
}
|
|
}
|
|
|
|
// order deque by descending degree
|
|
std::stable_sort(orderedVertices.begin() + firstDegreeChange,
|
|
orderedVertices.end(),
|
|
[°rees](const Vertex& v1, const Vertex& v2)
|
|
{
|
|
return degrees[v1] > degrees[v2];
|
|
});
|
|
|
|
// Overwrite degree with color
|
|
auto& colors = degrees;
|
|
std::fill(colors.begin(), colors.end(), -1);
|
|
|
|
int color = 0;
|
|
std::vector<std::size_t> verticesPerColor;
|
|
verticesPerColor.reserve(10);
|
|
|
|
while(!orderedVertices.empty())
|
|
{
|
|
verticesPerColor
|
|
.push_back(Detail::colorGraphWelshPowell(graph, orderedVertices, colors,
|
|
color++, noVertices));
|
|
}
|
|
return std::make_tuple(colors, color, verticesPerColor);
|
|
}
|
|
|
|
/// \! Reorder colored graph preserving order of vertices with the same color.
|
|
template<class Graph>
|
|
std::vector<std::size_t>
|
|
reorderVerticesPreserving(const std::vector<int>& colors, int noColors,
|
|
const std::vector<std::size_t>& verticesPerColor,
|
|
const Graph& graph)
|
|
{
|
|
std::vector<std::size_t> colorIndex(noColors, 0);
|
|
std::vector<std::size_t> indices(graph.maxVertex() + 1);
|
|
std::partial_sum(verticesPerColor.begin(),
|
|
verticesPerColor.begin()+verticesPerColor.size() - 1,
|
|
colorIndex.begin() + 1);
|
|
|
|
for(const auto& vertex: graph)
|
|
{
|
|
indices[vertex] = colorIndex[colors[vertex]]++;
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
/// \! Reorder Vetrices in spheres
|
|
template<class Graph>
|
|
std::vector<std::size_t>
|
|
reorderVerticesSpheres(const std::vector<int>& colors, int noColors,
|
|
const std::vector<std::size_t>& verticesPerColor,
|
|
const Graph& graph,
|
|
typename Graph::VertexDescriptor root)
|
|
{
|
|
std::vector<std::size_t> colorIndex(noColors, 0);
|
|
const auto notVisitedTag = std::numeric_limits<std::size_t>::max();
|
|
std::vector<std::size_t> indices(graph.maxVertex() + 1, notVisitedTag);
|
|
using Vertex = typename Graph::VertexDescriptor;
|
|
std::partial_sum(verticesPerColor.begin(),
|
|
verticesPerColor.begin()+verticesPerColor.size() - 1,
|
|
colorIndex.begin() + 1);
|
|
std::size_t noVisited = 0;
|
|
auto numberer = [&colorIndex, &colors, &indices](Vertex vertex)
|
|
{
|
|
indices[vertex] = colorIndex[colors[vertex]]++;
|
|
};
|
|
|
|
while ( noVisited < graph.maxVertex() + 1 )
|
|
{
|
|
numberer(root);
|
|
++noVisited; //root node already visited and not visited in BFS
|
|
noVisited += Detail::breadthFirstSearch(graph, root, numberer);
|
|
if ( noVisited < graph.maxVertex() + 1 )
|
|
{
|
|
// Graph is disconnected search for not yet visited node
|
|
for(auto vertex: graph)
|
|
{
|
|
if ( indices[vertex] == notVisitedTag )
|
|
{
|
|
// \todo make sure that this is a peripheral node!
|
|
root = vertex;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return indices;
|
|
}
|
|
} // end namespace Opm
|
|
#endif
|