mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-11 17:01:55 -06:00
329 lines
13 KiB
C++
329 lines
13 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::FlashIntensiveQuantities
|
|
*/
|
|
#ifndef OPM_FLASH_INTENSIVE_QUANTITIES_HH
|
|
#define OPM_FLASH_INTENSIVE_QUANTITIES_HH
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <opm/material/Constants.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
|
|
#include <opm/models/common/energymodule.hh>
|
|
#include <opm/models/common/diffusionmodule.hh>
|
|
|
|
#include <opm/models/flash/flashproperties.hh>
|
|
|
|
#include <opm/models/ptflash/flashindices.hh>
|
|
#include <opm/models/ptflash/flashparameters.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup FlashModel
|
|
* \ingroup IntensiveQuantities
|
|
*
|
|
* \brief Contains the intensive quantities of the ptflash-based compositional multi-phase model
|
|
*/
|
|
template <class TypeTag>
|
|
class FlashIntensiveQuantities
|
|
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
|
|
, public DiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
|
|
, public EnergyIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>() >
|
|
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
|
|
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
|
|
|
// primary variable indices
|
|
enum { z0Idx = Indices::z0Idx };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using FlashSolver = GetPropType<TypeTag, Properties::FlashSolver>;
|
|
|
|
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
|
|
using DiffusionIntensiveQuantities = Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
|
|
using EnergyIntensiveQuantities = Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy>;
|
|
|
|
public:
|
|
//! The type of the object returned by the fluidState() method
|
|
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem, enableEnergy>;
|
|
|
|
FlashIntensiveQuantities() = default;
|
|
|
|
FlashIntensiveQuantities(const FlashIntensiveQuantities& other) = default;
|
|
|
|
FlashIntensiveQuantities& operator=(const FlashIntensiveQuantities& other) = default;
|
|
|
|
/*!
|
|
* \copydoc IntensiveQuantities::update
|
|
*/
|
|
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
|
|
{
|
|
ParentType::update(elemCtx, dofIdx, timeIdx);
|
|
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
|
|
|
|
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
const auto& problem = elemCtx.problem();
|
|
|
|
const Scalar flashTolerance = Parameters::Get<Parameters::FlashTolerance<Scalar>>();
|
|
const int flashVerbosity = Parameters::Get<Parameters::FlashVerbosity>();
|
|
const std::string flashTwoPhaseMethod = Parameters::Get<Parameters::FlashTwoPhaseMethod>();
|
|
|
|
// extract the total molar densities of the components
|
|
ComponentVector z(0.);
|
|
{
|
|
Evaluation lastZ = 1.0;
|
|
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
|
|
z[compIdx] = priVars.makeEvaluation(z0Idx + compIdx, timeIdx);
|
|
lastZ -= z[compIdx];
|
|
}
|
|
z[numComponents - 1] = lastZ;
|
|
|
|
Evaluation sumz = 0.0;
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
z[compIdx] = Opm::max(z[compIdx], 1e-8);
|
|
sumz +=z[compIdx];
|
|
}
|
|
z /= sumz;
|
|
}
|
|
|
|
Evaluation p = priVars.makeEvaluation(pressure0Idx, timeIdx);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fluidState_.setPressure(phaseIdx, p);
|
|
|
|
// Get initial K and L from storage initially (if enabled)
|
|
const auto *hint = elemCtx.thermodynamicHint(dofIdx, timeIdx);
|
|
if (hint) {
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
const Evaluation& Ktmp = hint->fluidState().K(compIdx);
|
|
fluidState_.setKvalue(compIdx, Ktmp);
|
|
}
|
|
const Evaluation& Ltmp = hint->fluidState().L();
|
|
fluidState_.setLvalue(Ltmp);
|
|
}
|
|
else if (timeIdx == 0 && elemCtx.thermodynamicHint(dofIdx, 1)) {
|
|
// checking the storage cache
|
|
const auto& hint2 = elemCtx.thermodynamicHint(dofIdx, 1);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
const Evaluation& Ktmp = hint2->fluidState().K(compIdx);
|
|
fluidState_.setKvalue(compIdx, Ktmp);
|
|
}
|
|
const Evaluation& Ltmp = hint2->fluidState().L();
|
|
fluidState_.setLvalue(Ltmp);
|
|
}
|
|
else {
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
const Evaluation Ktmp = fluidState_.wilsonK_(compIdx);
|
|
fluidState_.setKvalue(compIdx, Ktmp);
|
|
}
|
|
const Evaluation& Ltmp = -1.0;
|
|
fluidState_.setLvalue(Ltmp);
|
|
}
|
|
|
|
/////////////
|
|
// Compute the phase compositions and densities
|
|
/////////////
|
|
if (flashVerbosity >= 1) {
|
|
const int spatialIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
|
std::cout << " updating the intensive quantities for Cell " << spatialIdx << std::endl;
|
|
}
|
|
FlashSolver::solve(fluidState_, z, flashTwoPhaseMethod, flashTolerance, flashVerbosity);
|
|
|
|
if (flashVerbosity >= 5) {
|
|
// printing of flash result after solve
|
|
const int spatialIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
|
std::cout << " \n After flash solve for cell " << spatialIdx << std::endl;
|
|
ComponentVector x, y;
|
|
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
|
|
x[comp_idx] = fluidState_.moleFraction(FluidSystem::oilPhaseIdx, comp_idx);
|
|
y[comp_idx] = fluidState_.moleFraction(FluidSystem::gasPhaseIdx, comp_idx);
|
|
}
|
|
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
|
|
std::cout << " x for component: " << comp_idx << " is:" << std::endl;
|
|
std::cout << x[comp_idx] << std::endl;
|
|
|
|
std::cout << " y for component: " << comp_idx << "is:" << std::endl;
|
|
std::cout << y[comp_idx] << std::endl;
|
|
}
|
|
const Evaluation& L = fluidState_.L();
|
|
std::cout << " L is:" << std::endl;
|
|
std::cout << L << std::endl;
|
|
}
|
|
|
|
|
|
// Update phases
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
paramCache.updatePhase(fluidState_, FluidSystem::oilPhaseIdx);
|
|
|
|
const Scalar R = Opm::Constants<Scalar>::R;
|
|
Evaluation Z_L = (paramCache.molarVolume(FluidSystem::oilPhaseIdx) * fluidState_.pressure(FluidSystem::oilPhaseIdx) )/
|
|
(R * fluidState_.temperature(FluidSystem::oilPhaseIdx));
|
|
paramCache.updatePhase(fluidState_, FluidSystem::gasPhaseIdx);
|
|
Evaluation Z_V = (paramCache.molarVolume(FluidSystem::gasPhaseIdx) * fluidState_.pressure(FluidSystem::gasPhaseIdx) )/
|
|
(R * fluidState_.temperature(FluidSystem::gasPhaseIdx));
|
|
|
|
|
|
// Update saturation
|
|
// \Note: the current implementation assume oil-gas system.
|
|
Evaluation L = fluidState_.L();
|
|
Evaluation So = Opm::max((L * Z_L / ( L * Z_L + (1 - L) * Z_V)), 0.0);
|
|
Evaluation Sg = Opm::max(1 - So, 0.0);
|
|
Scalar sumS = Opm::getValue(So) + Opm::getValue(Sg);
|
|
So /= sumS;
|
|
Sg /= sumS;
|
|
|
|
fluidState_.setSaturation(0, So);
|
|
fluidState_.setSaturation(1, Sg);
|
|
|
|
fluidState_.setCompressFactor(0, Z_L);
|
|
fluidState_.setCompressFactor(1, Z_V);
|
|
|
|
// Print saturation
|
|
if (flashVerbosity >= 5) {
|
|
std::cout << "So = " << So <<std::endl;
|
|
std::cout << "Sg = " << Sg <<std::endl;
|
|
}
|
|
|
|
// Print saturation
|
|
if (flashVerbosity >= 5) {
|
|
std::cout << "So = " << So <<std::endl;
|
|
std::cout << "Sg = " << Sg <<std::endl;
|
|
std::cout << "Z_L = " << Z_L <<std::endl;
|
|
std::cout << "Z_V = " << Z_V <<std::endl;
|
|
}
|
|
|
|
/////////////
|
|
// Compute rel. perm and viscosity and densities
|
|
/////////////
|
|
const MaterialLawParams& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx);
|
|
|
|
// calculate relative permeability
|
|
MaterialLaw::relativePermeabilities(relativePermeability_,
|
|
materialParams, fluidState_);
|
|
Opm::Valgrind::CheckDefined(relativePermeability_);
|
|
|
|
// set the phase viscosity and density
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
paramCache.updatePhase(fluidState_, phaseIdx);
|
|
|
|
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
|
|
|
|
fluidState_.setViscosity(phaseIdx, mu);
|
|
|
|
mobility_[phaseIdx] = relativePermeability_[phaseIdx] / mu;
|
|
Opm::Valgrind::CheckDefined(mobility_[phaseIdx]);
|
|
|
|
const Evaluation& rho = FluidSystem::density(fluidState_, paramCache, phaseIdx);
|
|
fluidState_.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
/////////////
|
|
// Compute the remaining quantities
|
|
/////////////
|
|
|
|
// porosity
|
|
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
|
|
Opm::Valgrind::CheckDefined(porosity_);
|
|
|
|
// intrinsic permeability
|
|
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the quantities specific for the velocity model
|
|
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
|
|
|
|
// energy related quantities
|
|
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the diffusion specific quantities of the intensive quantities
|
|
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::fluidState
|
|
*/
|
|
const FluidState& fluidState() const
|
|
{ return fluidState_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
|
|
*/
|
|
const DimMatrix& intrinsicPermeability() const
|
|
{ return intrinsicPerm_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
|
|
*/
|
|
const Evaluation& relativePermeability(unsigned phaseIdx) const
|
|
{ return relativePermeability_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::mobility
|
|
*/
|
|
const Evaluation& mobility(unsigned phaseIdx) const
|
|
{
|
|
return mobility_[phaseIdx];
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::porosity
|
|
*/
|
|
const Evaluation& porosity() const
|
|
{ return porosity_; }
|
|
|
|
private:
|
|
DimMatrix intrinsicPerm_;
|
|
FluidState fluidState_;
|
|
Evaluation porosity_;
|
|
std::array<Evaluation,numPhases> relativePermeability_;
|
|
std::array<Evaluation,numPhases> mobility_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|