opm-simulators/opm/models/ptflash/flashintensivequantities.hh
2024-08-12 15:40:31 +02:00

329 lines
13 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlashIntensiveQuantities
*/
#ifndef OPM_FLASH_INTENSIVE_QUANTITIES_HH
#define OPM_FLASH_INTENSIVE_QUANTITIES_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <opm/material/Constants.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/models/common/energymodule.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/models/flash/flashproperties.hh>
#include <opm/models/ptflash/flashindices.hh>
#include <opm/models/ptflash/flashparameters.hh>
namespace Opm {
/*!
* \ingroup FlashModel
* \ingroup IntensiveQuantities
*
* \brief Contains the intensive quantities of the ptflash-based compositional multi-phase model
*/
template <class TypeTag>
class FlashIntensiveQuantities
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
, public DiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
, public EnergyIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>() >
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
{
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
// primary variable indices
enum { z0Idx = Indices::z0Idx };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { dimWorld = GridView::dimensionworld };
enum { pressure0Idx = Indices::pressure0Idx };
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using FlashSolver = GetPropType<TypeTag, Properties::FlashSolver>;
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
using DiffusionIntensiveQuantities = Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
using EnergyIntensiveQuantities = Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy>;
public:
//! The type of the object returned by the fluidState() method
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem, enableEnergy>;
FlashIntensiveQuantities() = default;
FlashIntensiveQuantities(const FlashIntensiveQuantities& other) = default;
FlashIntensiveQuantities& operator=(const FlashIntensiveQuantities& other) = default;
/*!
* \copydoc IntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
const auto& problem = elemCtx.problem();
const Scalar flashTolerance = Parameters::Get<Parameters::FlashTolerance<Scalar>>();
const int flashVerbosity = Parameters::Get<Parameters::FlashVerbosity>();
const std::string flashTwoPhaseMethod = Parameters::Get<Parameters::FlashTwoPhaseMethod>();
// extract the total molar densities of the components
ComponentVector z(0.);
{
Evaluation lastZ = 1.0;
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
z[compIdx] = priVars.makeEvaluation(z0Idx + compIdx, timeIdx);
lastZ -= z[compIdx];
}
z[numComponents - 1] = lastZ;
Evaluation sumz = 0.0;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
z[compIdx] = Opm::max(z[compIdx], 1e-8);
sumz +=z[compIdx];
}
z /= sumz;
}
Evaluation p = priVars.makeEvaluation(pressure0Idx, timeIdx);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState_.setPressure(phaseIdx, p);
// Get initial K and L from storage initially (if enabled)
const auto *hint = elemCtx.thermodynamicHint(dofIdx, timeIdx);
if (hint) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation& Ktmp = hint->fluidState().K(compIdx);
fluidState_.setKvalue(compIdx, Ktmp);
}
const Evaluation& Ltmp = hint->fluidState().L();
fluidState_.setLvalue(Ltmp);
}
else if (timeIdx == 0 && elemCtx.thermodynamicHint(dofIdx, 1)) {
// checking the storage cache
const auto& hint2 = elemCtx.thermodynamicHint(dofIdx, 1);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation& Ktmp = hint2->fluidState().K(compIdx);
fluidState_.setKvalue(compIdx, Ktmp);
}
const Evaluation& Ltmp = hint2->fluidState().L();
fluidState_.setLvalue(Ltmp);
}
else {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation Ktmp = fluidState_.wilsonK_(compIdx);
fluidState_.setKvalue(compIdx, Ktmp);
}
const Evaluation& Ltmp = -1.0;
fluidState_.setLvalue(Ltmp);
}
/////////////
// Compute the phase compositions and densities
/////////////
if (flashVerbosity >= 1) {
const int spatialIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
std::cout << " updating the intensive quantities for Cell " << spatialIdx << std::endl;
}
FlashSolver::solve(fluidState_, z, flashTwoPhaseMethod, flashTolerance, flashVerbosity);
if (flashVerbosity >= 5) {
// printing of flash result after solve
const int spatialIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
std::cout << " \n After flash solve for cell " << spatialIdx << std::endl;
ComponentVector x, y;
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
x[comp_idx] = fluidState_.moleFraction(FluidSystem::oilPhaseIdx, comp_idx);
y[comp_idx] = fluidState_.moleFraction(FluidSystem::gasPhaseIdx, comp_idx);
}
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
std::cout << " x for component: " << comp_idx << " is:" << std::endl;
std::cout << x[comp_idx] << std::endl;
std::cout << " y for component: " << comp_idx << "is:" << std::endl;
std::cout << y[comp_idx] << std::endl;
}
const Evaluation& L = fluidState_.L();
std::cout << " L is:" << std::endl;
std::cout << L << std::endl;
}
// Update phases
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
paramCache.updatePhase(fluidState_, FluidSystem::oilPhaseIdx);
const Scalar R = Opm::Constants<Scalar>::R;
Evaluation Z_L = (paramCache.molarVolume(FluidSystem::oilPhaseIdx) * fluidState_.pressure(FluidSystem::oilPhaseIdx) )/
(R * fluidState_.temperature(FluidSystem::oilPhaseIdx));
paramCache.updatePhase(fluidState_, FluidSystem::gasPhaseIdx);
Evaluation Z_V = (paramCache.molarVolume(FluidSystem::gasPhaseIdx) * fluidState_.pressure(FluidSystem::gasPhaseIdx) )/
(R * fluidState_.temperature(FluidSystem::gasPhaseIdx));
// Update saturation
// \Note: the current implementation assume oil-gas system.
Evaluation L = fluidState_.L();
Evaluation So = Opm::max((L * Z_L / ( L * Z_L + (1 - L) * Z_V)), 0.0);
Evaluation Sg = Opm::max(1 - So, 0.0);
Scalar sumS = Opm::getValue(So) + Opm::getValue(Sg);
So /= sumS;
Sg /= sumS;
fluidState_.setSaturation(0, So);
fluidState_.setSaturation(1, Sg);
fluidState_.setCompressFactor(0, Z_L);
fluidState_.setCompressFactor(1, Z_V);
// Print saturation
if (flashVerbosity >= 5) {
std::cout << "So = " << So <<std::endl;
std::cout << "Sg = " << Sg <<std::endl;
}
// Print saturation
if (flashVerbosity >= 5) {
std::cout << "So = " << So <<std::endl;
std::cout << "Sg = " << Sg <<std::endl;
std::cout << "Z_L = " << Z_L <<std::endl;
std::cout << "Z_V = " << Z_V <<std::endl;
}
/////////////
// Compute rel. perm and viscosity and densities
/////////////
const MaterialLawParams& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx);
// calculate relative permeability
MaterialLaw::relativePermeabilities(relativePermeability_,
materialParams, fluidState_);
Opm::Valgrind::CheckDefined(relativePermeability_);
// set the phase viscosity and density
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
paramCache.updatePhase(fluidState_, phaseIdx);
const Evaluation& mu = FluidSystem::viscosity(fluidState_, paramCache, phaseIdx);
fluidState_.setViscosity(phaseIdx, mu);
mobility_[phaseIdx] = relativePermeability_[phaseIdx] / mu;
Opm::Valgrind::CheckDefined(mobility_[phaseIdx]);
const Evaluation& rho = FluidSystem::density(fluidState_, paramCache, phaseIdx);
fluidState_.setDensity(phaseIdx, rho);
}
/////////////
// Compute the remaining quantities
/////////////
// porosity
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
Opm::Valgrind::CheckDefined(porosity_);
// intrinsic permeability
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
// update the quantities specific for the velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
// energy related quantities
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
*/
const DimMatrix& intrinsicPermeability() const
{ return intrinsicPerm_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
*/
const Evaluation& relativePermeability(unsigned phaseIdx) const
{ return relativePermeability_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{
return mobility_[phaseIdx];
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
private:
DimMatrix intrinsicPerm_;
FluidState fluidState_;
Evaluation porosity_;
std::array<Evaluation,numPhases> relativePermeability_;
std::array<Evaluation,numPhases> mobility_;
};
} // namespace Opm
#endif