opm-simulators/ebos/eclgenericoutputblackoilmodule.cc
2023-08-15 09:32:10 +02:00

1263 lines
48 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <ebos/eclgenericoutputblackoilmodule.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/grid/common/CommunicationUtils.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/input/eclipse/Schedule/RFTConfig.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <opm/simulators/utils/PressureAverage.hpp>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <sstream>
#include <stdexcept>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <vector>
#include <fmt/format.h>
namespace {
std::string EclString(const Opm::Inplace::Phase phase)
{
switch (phase) {
case Opm::Inplace::Phase::WATER:
return "WIP";
case Opm::Inplace::Phase::OIL:
return "OIP";
case Opm::Inplace::Phase::GAS:
return "GIP";
case Opm::Inplace::Phase::OilInLiquidPhase:
return "OIPL";
case Opm::Inplace::Phase::OilInGasPhase:
return "OIPG";
case Opm::Inplace::Phase::GasInLiquidPhase:
return "GIPL";
case Opm::Inplace::Phase::GasInGasPhase:
return "GIPG";
case Opm::Inplace::Phase::PoreVolume:
return "RPV";
case Opm::Inplace::Phase::WaterResVolume:
return "WIPR";
case Opm::Inplace::Phase::OilResVolume:
return "OIPR";
case Opm::Inplace::Phase::GasResVolume:
return "GIPR";
case Opm::Inplace::Phase::SALT:
return "SIP";
case Opm::Inplace::Phase::CO2InWaterPhase:
return "WCD";
case Opm::Inplace::Phase::CO2InGasPhaseInMob:
return "GCDI";
case Opm::Inplace::Phase::CO2InGasPhaseMob:
return "GCDM";
case Opm::Inplace::Phase::WaterInGasPhase:
return "WIPG";
case Opm::Inplace::Phase::WaterInWaterPhase:
return "WIPL";
default:
throw std::logic_error {
fmt::format("Phase enum with integer value: "
"{} not recognized", static_cast<int>(phase))
};
}
}
std::size_t numCells(const Opm::EclipseState& eclState)
{
return eclState.fieldProps().get_int("FIPNUM").size();
}
std::vector<Opm::EclInterRegFlowMap::SingleRegion>
defineInterRegionFlowArrays(const Opm::EclipseState& eclState,
const Opm::SummaryConfig& summaryConfig)
{
auto regions = std::vector<Opm::EclInterRegFlowMap::SingleRegion>{};
const auto& fprops = eclState.fieldProps();
for (const auto& arrayName : summaryConfig.fip_regions_interreg_flow()) {
regions.push_back({ arrayName, std::cref(fprops.get_int(arrayName)) });
}
return regions;
}
}
namespace Opm {
template<class FluidSystem, class Scalar>
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
EclGenericOutputBlackoilModule(const EclipseState& eclState,
const Schedule& schedule,
const SummaryConfig& summaryConfig,
const SummaryState& summaryState,
bool enableEnergy,
bool enableTemperature,
bool enableSolvent,
bool enablePolymer,
bool enableFoam,
bool enableBrine,
bool enableSaltPrecipitation,
bool enableExtbo,
bool enableMICP)
: eclState_(eclState)
, schedule_(schedule)
, summaryConfig_(summaryConfig)
, summaryState_(summaryState)
, interRegionFlows_(numCells(eclState), defineInterRegionFlowArrays(eclState, summaryConfig))
, logOutput_(eclState, schedule, summaryState)
, enableEnergy_(enableEnergy)
, enableTemperature_(enableTemperature)
, enableSolvent_(enableSolvent)
, enablePolymer_(enablePolymer)
, enableFoam_(enableFoam)
, enableBrine_(enableBrine)
, enableSaltPrecipitation_(enableSaltPrecipitation)
, enableExtbo_(enableExtbo)
, enableMICP_(enableMICP)
, local_data_valid_(false)
{
const auto& fp = eclState_.fieldProps();
this->regions_["FIPNUM"] = fp.get_int("FIPNUM");
for (const auto& region : summaryConfig_.fip_regions())
this->regions_[region] = fp.get_int(region);
this->RPRNodes_ = summaryConfig_.keywords("RPR*");
this->RPRPNodes_ = summaryConfig_.keywords("RPRP*");
for (const auto& phase : Inplace::phases()) {
std::string key_pattern = "R" + EclString(phase) + "*";
this->regionNodes_[phase] = summaryConfig_.keywords(key_pattern);
}
// Check if FLORES/FLOWS is set in any RPTRST in the schedule
anyFlores_ = false; // Used for the initialization of the sparse table
anyFlows_ = false;
enableFlores_ = false; // Used for the output of i+, j+, k+
enableFloresn_ = false; // Used for the special case of nnc
enableFlows_ = false;
enableFlowsn_ = false;
for (const auto& block : this->schedule_) { // Uses Schedule::begin() and Schedule::end()
const auto& rstkw = block.rst_config().keywords;
if (! anyFlores_) {
anyFlores_ = rstkw.find("FLORES") != rstkw.end();
}
if (! anyFlows_) {
anyFlows_ = rstkw.find("FLOWS") != rstkw.end();
}
if (anyFlores_ && anyFlows_) {
// Terminate report step loop early if both FLORES and FLOWS
// have been set at some point as there's no need to search
// any further in that case.
break;
}
}
}
template<class FluidSystem, class Scalar>
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
~EclGenericOutputBlackoilModule() = default;
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputCumLog(std::size_t reportStepNum, const bool substep, bool forceDisableCumOutput)
{
if (!substep && !forceDisableCumOutput) {
logOutput_.cumulative(reportStepNum,
[this](const std::string& name)
{ return this->isDefunctParallelWell(name); });
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputProdLog(std::size_t reportStepNum,
const bool substep,
bool forceDisableProdOutput)
{
if (!substep && !forceDisableProdOutput) {
logOutput_.production(reportStepNum,
[this](const std::string& name)
{ return this->isDefunctParallelWell(name); });
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputInjLog(std::size_t reportStepNum, const bool substep, bool forceDisableInjOutput)
{
if (!substep && !forceDisableInjOutput) {
logOutput_.injection(reportStepNum,
[this](const std::string& name)
{ return this->isDefunctParallelWell(name); });
}
}
template<class FluidSystem,class Scalar>
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputFipLog(std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData,
const bool substep,
const Parallel::Communication& comm)
{
auto inplace = this->accumulateRegionSums(comm);
if (comm.rank() != 0)
return inplace;
updateSummaryRegionValues(inplace,
miscSummaryData,
regionData);
if (!substep && !forceDisableFipOutput_) {
logOutput_.fip(inplace, this->initialInplace());
}
return inplace;
}
template<class FluidSystem,class Scalar>
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputFipresvLog(std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData,
const bool substep,
const Parallel::Communication& comm)
{
auto inplace = this->accumulateRegionSums(comm);
if (comm.rank() != 0)
return inplace;
updateSummaryRegionValues(inplace,
miscSummaryData,
regionData);
if (!substep && !forceDisableFipresvOutput_) {
logOutput_.fipResv(inplace);
}
return inplace;
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
addRftDataToWells(data::Wells& wellDatas, std::size_t reportStepNum)
{
const auto& rft_config = schedule_[reportStepNum].rft_config();
for (const auto& well: schedule_.getWells(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(well.name())) {
continue;
}
//add data infrastructure for shut wells
if (!wellDatas.count(well.name())) {
data::Well wellData;
if (!rft_config.active())
continue;
wellData.connections.resize(well.getConnections().size());
std::size_t count = 0;
for (const auto& connection: well.getConnections()) {
const std::size_t i = std::size_t(connection.getI());
const std::size_t j = std::size_t(connection.getJ());
const std::size_t k = std::size_t(connection.getK());
const std::size_t index = eclState_.gridDims().getGlobalIndex(i, j, k);
auto& connectionData = wellData.connections[count];
connectionData.index = index;
count++;
}
wellDatas.emplace(std::make_pair(well.name(), wellData));
}
data::Well& wellData = wellDatas.at(well.name());
for (auto& connectionData: wellData.connections) {
const auto index = connectionData.index;
if (oilConnectionPressures_.count(index) > 0)
connectionData.cell_pressure = oilConnectionPressures_.at(index);
if (waterConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_water = waterConnectionSaturations_.at(index);
if (gasConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index);
}
}
oilConnectionPressures_.clear();
waterConnectionSaturations_.clear();
gasConnectionSaturations_.clear();
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
assignToSolution(data::Solution& sol)
{
using DataEntry =
std::tuple<std::string, UnitSystem::measure, const std::vector<Scalar>&>;
auto doInsert = [&sol](const DataEntry& entry,
const data::TargetType target)
{
if (std::get<2>(entry).empty()) {
return;
}
sol.insert(std::get<std::string>(entry),
std::get<UnitSystem::measure>(entry),
std::move(std::get<2>(entry)),
target);
};
const auto baseSolutionArrays = std::array {
DataEntry{"1OVERBG", UnitSystem::measure::gas_inverse_formation_volume_factor, invB_[gasPhaseIdx]},
DataEntry{"1OVERBO", UnitSystem::measure::oil_inverse_formation_volume_factor, invB_[oilPhaseIdx]},
DataEntry{"1OVERBW", UnitSystem::measure::water_inverse_formation_volume_factor, invB_[waterPhaseIdx]},
DataEntry{"FLOGASI+", UnitSystem::measure::gas_surface_rate, flowsi_[gasCompIdx]},
DataEntry{"FLOGASJ+", UnitSystem::measure::gas_surface_rate, flowsj_[gasCompIdx]},
DataEntry{"FLOGASK+", UnitSystem::measure::gas_surface_rate, flowsk_[gasCompIdx]},
DataEntry{"FLOOILI+", UnitSystem::measure::liquid_surface_rate, flowsi_[oilCompIdx]},
DataEntry{"FLOOILJ+", UnitSystem::measure::liquid_surface_rate, flowsj_[oilCompIdx]},
DataEntry{"FLOOILK+", UnitSystem::measure::liquid_surface_rate, flowsk_[oilCompIdx]},
DataEntry{"FLOWATI+", UnitSystem::measure::liquid_surface_rate, flowsi_[waterCompIdx]},
DataEntry{"FLOWATJ+", UnitSystem::measure::liquid_surface_rate, flowsj_[waterCompIdx]},
DataEntry{"FLOWATK+", UnitSystem::measure::liquid_surface_rate, flowsk_[waterCompIdx]},
DataEntry{"FLRGASI+", UnitSystem::measure::rate, floresi_[gasCompIdx]},
DataEntry{"FLRGASJ+", UnitSystem::measure::rate, floresj_[gasCompIdx]},
DataEntry{"FLRGASK+", UnitSystem::measure::rate, floresk_[gasCompIdx]},
DataEntry{"FLROILI+", UnitSystem::measure::rate, floresi_[oilCompIdx]},
DataEntry{"FLROILJ+", UnitSystem::measure::rate, floresj_[oilCompIdx]},
DataEntry{"FLROILK+", UnitSystem::measure::rate, floresk_[oilCompIdx]},
DataEntry{"FLRWATI+", UnitSystem::measure::rate, floresi_[waterCompIdx]},
DataEntry{"FLRWATJ+", UnitSystem::measure::rate, floresj_[waterCompIdx]},
DataEntry{"FLRWATK+", UnitSystem::measure::rate, floresk_[waterCompIdx]},
DataEntry{"FOAM", UnitSystem::measure::identity, cFoam_},
DataEntry{"GASKR", UnitSystem::measure::identity, relativePermeability_[gasPhaseIdx]},
DataEntry{"GAS_DEN", UnitSystem::measure::density, density_[gasPhaseIdx]},
DataEntry{"GAS_VISC", UnitSystem::measure::viscosity, viscosity_[gasPhaseIdx]},
DataEntry{"OILKR", UnitSystem::measure::identity, relativePermeability_[oilPhaseIdx]},
DataEntry{"OIL_DEN", UnitSystem::measure::density, density_[oilPhaseIdx]},
DataEntry{"OIL_VISC", UnitSystem::measure::viscosity, viscosity_[oilPhaseIdx]},
DataEntry{"PBUB", UnitSystem::measure::pressure, bubblePointPressure_},
DataEntry{"PCOG", UnitSystem::measure::pressure, pcog_},
DataEntry{"PCOW", UnitSystem::measure::pressure, pcow_},
DataEntry{"PDEW", UnitSystem::measure::pressure, dewPointPressure_},
DataEntry{"POLYMER", UnitSystem::measure::identity, cPolymer_},
DataEntry{"PPCW", UnitSystem::measure::pressure, ppcw_},
DataEntry{"PRESROCC", UnitSystem::measure::pressure, minimumOilPressure_},
DataEntry{"PRESSURE", UnitSystem::measure::pressure, fluidPressure_},
DataEntry{"RS", UnitSystem::measure::gas_oil_ratio, rs_},
DataEntry{"RSSAT", UnitSystem::measure::gas_oil_ratio, gasDissolutionFactor_},
DataEntry{"RV", UnitSystem::measure::oil_gas_ratio, rv_},
DataEntry{"RVSAT", UnitSystem::measure::oil_gas_ratio, oilVaporizationFactor_},
DataEntry{"SALT", UnitSystem::measure::salinity, cSalt_},
DataEntry{"SOMAX", UnitSystem::measure::identity, soMax_},
DataEntry{"SSOLVENT", UnitSystem::measure::identity, sSol_},
DataEntry{"SWMAX", UnitSystem::measure::identity, swMax_},
DataEntry{"WATKR", UnitSystem::measure::identity, relativePermeability_[waterPhaseIdx]},
DataEntry{"WAT_DEN", UnitSystem::measure::density, density_[waterPhaseIdx]},
DataEntry{"WAT_VISC", UnitSystem::measure::viscosity, viscosity_[waterPhaseIdx]},
};
const auto extendedSolutionArrays = std::array {
DataEntry{"BIOFILM", UnitSystem::measure::identity, cBiofilm_},
DataEntry{"CALCITE", UnitSystem::measure::identity, cCalcite_},
DataEntry{"DRSDTCON", UnitSystem::measure::gas_oil_ratio_rate, drsdtcon_},
DataEntry{"KRNSW_GO", UnitSystem::measure::identity, krnSwMdcGo_},
DataEntry{"KRNSW_OW", UnitSystem::measure::identity, krnSwMdcOw_},
DataEntry{"MICROBES", UnitSystem::measure::density, cMicrobes_},
DataEntry{"OXYGEN", UnitSystem::measure::density, cOxygen_},
DataEntry{"PCSWM_GO", UnitSystem::measure::identity, pcSwMdcGo_},
DataEntry{"PCSWM_OW", UnitSystem::measure::identity, pcSwMdcOw_},
DataEntry{"PERMFACT", UnitSystem::measure::identity, permFact_},
DataEntry{"PORV_RC", UnitSystem::measure::identity, rockCompPorvMultiplier_},
DataEntry{"PRES_OVB", UnitSystem::measure::pressure, overburdenPressure_},
DataEntry{"RSW", UnitSystem::measure::gas_oil_ratio, rsw_},
DataEntry{"RVW", UnitSystem::measure::oil_gas_ratio, rvw_},
DataEntry{"SALTP", UnitSystem::measure::identity, pSalt_},
DataEntry{"SS_X", UnitSystem::measure::identity, extboX_},
DataEntry{"SS_Y", UnitSystem::measure::identity, extboY_},
DataEntry{"SS_Z", UnitSystem::measure::identity, extboZ_},
DataEntry{"STD_CO2", UnitSystem::measure::identity, mFracCo2_},
DataEntry{"STD_GAS", UnitSystem::measure::identity, mFracGas_},
DataEntry{"STD_OIL", UnitSystem::measure::identity, mFracOil_},
DataEntry{"TMULT_RC", UnitSystem::measure::identity, rockCompTransMultiplier_},
DataEntry{"UREA", UnitSystem::measure::density, cUrea_},
};
for (const auto& array : baseSolutionArrays) {
doInsert(array, data::TargetType::RESTART_SOLUTION);
}
for (const auto& array : extendedSolutionArrays) {
doInsert(array, data::TargetType::RESTART_OPM_EXTENDED);
}
if (! this->temperature_.empty())
{
sol.insert("TEMP", UnitSystem::measure::temperature,
std::move(this->temperature_), data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
! this->saturation_[waterPhaseIdx].empty())
{
sol.insert("SWAT", UnitSystem::measure::identity,
std::move(this->saturation_[waterPhaseIdx]),
data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
! this->saturation_[gasPhaseIdx].empty())
{
sol.insert("SGAS", UnitSystem::measure::identity,
std::move(this->saturation_[gasPhaseIdx]),
data::TargetType::RESTART_SOLUTION);
}
if (eclState_.runspec().co2Storage() && !rsw_.empty()) {
auto mfrac = std::vector<double>(this->rsw_.size(), 0.0);
std::transform(this->rsw_.begin(), this->rsw_.end(),
this->eclState_.fieldProps().get_int("PVTNUM").begin(),
mfrac.begin(),
[](const auto& rsw, const int pvtReg)
{
const auto xwg = FluidSystem::convertRswToXwG(rsw, pvtReg - 1);
return FluidSystem::convertXwGToxwG(xwg, pvtReg - 1);
});
sol.insert("XMFCO2",
UnitSystem::measure::identity,
std::move(mfrac),
data::TargetType::RESTART_OPM_EXTENDED);
}
if (eclState_.runspec().co2Storage() && !rvw_.empty()) {
auto mfrac = std::vector<double>(this->rvw_.size(), 0.0);
std::transform(this->rvw_.begin(), this->rvw_.end(),
this->eclState_.fieldProps().get_int("PVTNUM").begin(),
mfrac.begin(),
[](const auto& rvw, const int pvtReg)
{
const auto xgw = FluidSystem::convertRvwToXgW(rvw, pvtReg - 1);
return FluidSystem::convertXgWToxgW(xgw, pvtReg - 1);
});
sol.insert("YMFWAT",
UnitSystem::measure::identity,
std::move(mfrac),
data::TargetType::RESTART_OPM_EXTENDED);
}
// Fluid in place
if (this->outputFipRestart_) {
for (const auto& phase : Inplace::phases()) {
if (! this->fip_[phase].empty()) {
sol.insert(EclString(phase),
UnitSystem::measure::volume,
this->fip_[phase],
data::TargetType::SUMMARY);
}
}
}
// Tracers
if (! this->tracerConcentrations_.empty()) {
const auto& tracers = this->eclState_.tracer();
for (auto tracerIdx = 0*tracers.size();
tracerIdx < tracers.size(); ++tracerIdx)
{
sol.insert(tracers[tracerIdx].fname(),
UnitSystem::measure::identity,
std::move(tracerConcentrations_[tracerIdx]),
data::TargetType::RESTART_TRACER_SOLUTION);
}
// Put tracerConcentrations container into a valid state. Otherwise
// we'll move from vectors that have already been moved from if we
// get here and it's not a restart step.
this->tracerConcentrations_.clear();
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
setRestart(const data::Solution& sol,
unsigned elemIdx,
unsigned globalDofIndex)
{
Scalar so = 1.0;
if (!saturation_[waterPhaseIdx].empty() && sol.has("SWAT")) {
saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex];
so -= sol.data("SWAT")[globalDofIndex];
}
if (!saturation_[gasPhaseIdx].empty() && sol.has("SGAS")) {
saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex];
so -= sol.data("SGAS")[globalDofIndex];
}
if (!sSol_.empty()) {
// keep the SSOL option for backward compatibility
// should be removed after 10.2018 release
if (sol.has("SSOL"))
sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex];
else if (sol.has("SSOLVENT"))
sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex];
so -= sSol_[elemIdx];
}
assert(!saturation_[oilPhaseIdx].empty());
saturation_[oilPhaseIdx][elemIdx] = so;
auto assign = [elemIdx, globalDofIndex, &sol](const std::string& name,
ScalarBuffer& data)
{
if (!data.empty() && sol.has(name)) {
data[elemIdx] = sol.data(name)[globalDofIndex];
}
};
const auto fields = std::array{
std::pair{"BIOFILM", &cBiofilm_},
std::pair{"CALCITE",&cCalcite_},
std::pair{"FOAM", &cFoam_},
std::pair{"KRNSW_GO", &krnSwMdcGo_},
std::pair{"KRNSW_OW", &krnSwMdcOw_},
std::pair{"MICROBES", &cMicrobes_},
std::pair{"OXYGEN", &cOxygen_},
std::pair{"PCSWM_GO", &pcSwMdcGo_},
std::pair{"PCSWM_OW", &pcSwMdcOw_},
std::pair{"PERMFACT", &permFact_},
std::pair{"POLYMER", &cPolymer_},
std::pair{"PPCW", &ppcw_},
std::pair{"PRESSURE", &fluidPressure_},
std::pair{"RS", &rs_},
std::pair{"RSW", &rsw_},
std::pair{"RV", &rv_},
std::pair{"RVW", &rvw_},
std::pair{"SALT", &cSalt_},
std::pair{"SALTP", &pSalt_},
std::pair{"SOMAX", &soMax_},
std::pair{"TEMP", &temperature_},
std::pair{"UREA", &cUrea_},
};
std::for_each(fields.begin(), fields.end(),
[&assign](const auto& p)
{ assign(p.first, *p.second); });
}
template<class FluidSystem,class Scalar>
typename EclGenericOutputBlackoilModule<FluidSystem,Scalar>::ScalarBuffer
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
regionSum(const ScalarBuffer& property,
const std::vector<int>& regionId,
std::size_t maxNumberOfRegions,
const Parallel::Communication& comm)
{
ScalarBuffer totals(maxNumberOfRegions, 0.0);
if (property.empty())
return totals;
assert(regionId.size() == property.size());
for (std::size_t j = 0; j < regionId.size(); ++j) {
const int regionIdx = regionId[j] - 1;
// the cell is not attributed to any region. ignore it!
if (regionIdx < 0)
continue;
assert(regionIdx < static_cast<int>(maxNumberOfRegions));
totals[regionIdx] += property[j];
}
for (std::size_t i = 0; i < maxNumberOfRegions; ++i)
totals[i] = comm.sum(totals[i]);
return totals;
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
doAllocBuffers(unsigned bufferSize,
unsigned reportStepNum,
const bool substep,
const bool log,
const bool isRestart,
const bool vapparsActive,
const bool enableHysteresis,
unsigned numTracers,
unsigned numOutputNnc)
{
// Output RESTART_OPM_EXTENDED only when explicitly requested by user.
std::map<std::string, int> rstKeywords = schedule_.rst_keywords(reportStepNum);
for (auto& [keyword, should_write] : rstKeywords) {
if (this->isOutputCreationDirective_(keyword)) {
// 'BASIC', 'FREQ' and similar. Don't attempt to create
// cell-based output for these keywords and don't warn about
// not being able to create such cell-based result vectors.
should_write = 0;
}
}
if (auto& norst = rstKeywords["NORST"]; norst > 0) {
// Don't emit diagnostic messages about unsupported 'NORST' key.
norst = 0;
}
this->outputFipRestart_ = false;
this->computeFip_ = false;
// Fluid in place
for (const auto& phase : Inplace::phases()) {
if (!substep || summaryConfig_.require3DField(EclString(phase))) {
if (auto& fip = rstKeywords["FIP"]; fip > 0) {
fip = 0;
this->outputFipRestart_ = true;
}
this->fip_[phase].resize(bufferSize, 0.0);
this->computeFip_ = true;
}
else {
this->fip_[phase].clear();
}
}
if (!substep ||
this->summaryConfig_.hasKeyword("FPR") ||
this->summaryConfig_.hasKeyword("FPRP") ||
!this->RPRNodes_.empty())
{
this->fip_[Inplace::Phase::PoreVolume].resize(bufferSize, 0.0);
this->dynamicPoreVolume_.resize(bufferSize, 0.0);
this->hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
this->pressureTimesPoreVolume_.resize(bufferSize, 0.0);
this->pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0);
}
else {
this->dynamicPoreVolume_.clear();
this->hydrocarbonPoreVolume_.clear();
this->pressureTimesPoreVolume_.clear();
this->pressureTimesHydrocarbonVolume_.clear();
}
// Well RFT data
if (!substep) {
const auto& rft_config = schedule_[reportStepNum].rft_config();
for (const auto& well: schedule_.getWells(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(well.name())) {
continue;
}
if (!rft_config.active())
continue;
for (const auto& connection: well.getConnections()) {
const std::size_t i = std::size_t(connection.getI());
const std::size_t j = std::size_t(connection.getJ());
const std::size_t k = std::size_t(connection.getK());
const std::size_t index = eclState_.gridDims().getGlobalIndex(i, j, k);
if (FluidSystem::phaseIsActive(oilPhaseIdx))
oilConnectionPressures_.emplace(std::make_pair(index, 0.0));
if (FluidSystem::phaseIsActive(waterPhaseIdx))
waterConnectionSaturations_.emplace(std::make_pair(index, 0.0));
if (FluidSystem::phaseIsActive(gasPhaseIdx))
gasConnectionSaturations_.emplace(std::make_pair(index, 0.0));
}
}
}
// Field data should be allocated
// 1) When we want to restart
// 2) When it is ask for by the user via restartConfig
// 3) When it is not a substep
if (!isRestart && (!schedule_.write_rst_file(reportStepNum) || substep)) {
return;
}
// Always output saturation of active phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (! FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
this->saturation_[phaseIdx].resize(bufferSize, 0.0);
}
// And oil pressure
fluidPressure_.resize(bufferSize, 0.0);
rstKeywords["PRES"] = 0;
rstKeywords["PRESSURE"] = 0;
// If TEMP is set in RPTRST we output temperature even if THERMAL
// is not activated
if (enableEnergy_ || rstKeywords["TEMP"] > 0) {
this->temperature_.resize(bufferSize, 0.0);
rstKeywords["TEMP"] = 0;
}
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
rstKeywords["SOIL"] = 0;
}
if (FluidSystem::phaseIsActive(gasPhaseIdx)) {
rstKeywords["SGAS"] = 0;
}
if (FluidSystem::phaseIsActive(waterPhaseIdx)) {
rstKeywords["SWAT"] = 0;
}
if (FluidSystem::enableDissolvedGas()) {
rs_.resize(bufferSize, 0.0);
rstKeywords["RS"] = 0;
}
if (FluidSystem::enableDissolvedGasInWater()) {
rsw_.resize(bufferSize, 0.0);
rstKeywords["RSW"] = 0;
}
if (FluidSystem::enableVaporizedOil()) {
rv_.resize(bufferSize, 0.0);
rstKeywords["RV"] = 0;
}
if (FluidSystem::enableVaporizedWater()) {
rvw_.resize(bufferSize, 0.0);
rstKeywords["RVW"] = 0;
}
if (schedule_[reportStepNum].oilvap().drsdtConvective()) {
drsdtcon_.resize(bufferSize, 0.0);
}
if (enableSolvent_) {
sSol_.resize(bufferSize, 0.0);
}
if (enablePolymer_) {
cPolymer_.resize(bufferSize, 0.0);
}
if (enableFoam_) {
cFoam_.resize(bufferSize, 0.0);
}
if (enableBrine_) {
cSalt_.resize(bufferSize, 0.0);
}
if (enableSaltPrecipitation_) {
pSalt_.resize(bufferSize, 0.0);
permFact_.resize(bufferSize, 0.0);
}
if (enableExtbo_) {
extboX_.resize(bufferSize, 0.0);
extboY_.resize(bufferSize, 0.0);
extboZ_.resize(bufferSize, 0.0);
mFracOil_.resize(bufferSize, 0.0);
mFracGas_.resize(bufferSize, 0.0);
mFracCo2_.resize(bufferSize, 0.0);
}
if (enableMICP_) {
cMicrobes_.resize(bufferSize, 0.0);
cOxygen_.resize(bufferSize, 0.0);
cUrea_.resize(bufferSize, 0.0);
cBiofilm_.resize(bufferSize, 0.0);
cCalcite_.resize(bufferSize, 0.0);
}
if (vapparsActive) {
soMax_.resize(bufferSize, 0.0);
}
if (enableHysteresis) {
pcSwMdcOw_.resize(bufferSize, 0.0);
krnSwMdcOw_.resize(bufferSize, 0.0);
pcSwMdcGo_.resize(bufferSize, 0.0);
krnSwMdcGo_.resize(bufferSize, 0.0);
}
if (eclState_.fieldProps().has_double("SWATINIT")) {
ppcw_.resize(bufferSize, 0.0);
rstKeywords["PPCW"] = 0;
}
if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) {
rstKeywords["RSSAT"] = 0;
gasDissolutionFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) {
rstKeywords["RVSAT"] = 0;
oilVaporizationFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) {
rstKeywords["BW"] = 0;
invB_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) {
rstKeywords["BO"] = 0;
invB_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) {
rstKeywords["BG"] = 0;
invB_[gasPhaseIdx].resize(bufferSize, 0.0);
}
enableFlows_ = false;
enableFlowsn_ = false;
if (rstKeywords["FLOWS"] > 0) {
rstKeywords["FLOWS"] = 0;
enableFlows_ = true;
const std::array<int, 3> phaseIdxs = { gasPhaseIdx, oilPhaseIdx, waterPhaseIdx };
const std::array<int, 3> compIdxs = { gasCompIdx, oilCompIdx, waterCompIdx };
const auto rstName = std::array { "FLOGASN+", "FLOOILN+", "FLOWATN+" };
for (unsigned ii = 0; ii < phaseIdxs.size(); ++ii) {
if (FluidSystem::phaseIsActive(phaseIdxs[ii])) {
flowsi_[compIdxs[ii]].resize(bufferSize, 0.0);
flowsj_[compIdxs[ii]].resize(bufferSize, 0.0);
flowsk_[compIdxs[ii]].resize(bufferSize, 0.0);
if (numOutputNnc > 0) {
enableFlowsn_ = true;
flowsn_[compIdxs[ii]].first = rstName[ii];
flowsn_[compIdxs[ii]].second.first.resize(numOutputNnc, -1);
flowsn_[compIdxs[ii]].second.second.resize(numOutputNnc, 0.0);
}
}
}
}
enableFlores_ = false;
enableFloresn_ = false;
if (rstKeywords["FLORES"] > 0) {
rstKeywords["FLORES"] = 0;
enableFlores_ = true;
const std::array<int, 3> phaseIdxs = { gasPhaseIdx, oilPhaseIdx, waterPhaseIdx };
const std::array<int, 3> compIdxs = { gasCompIdx, oilCompIdx, waterCompIdx };
const auto rstName = std::array{ "FLRGASN+", "FLROILN+", "FLRWATN+" };
for (unsigned ii = 0; ii < phaseIdxs.size(); ++ii) {
if (FluidSystem::phaseIsActive(phaseIdxs[ii])) {
floresi_[compIdxs[ii]].resize(bufferSize, 0.0);
floresj_[compIdxs[ii]].resize(bufferSize, 0.0);
floresk_[compIdxs[ii]].resize(bufferSize, 0.0);
if (numOutputNnc > 0) {
enableFloresn_ = true;
floresn_[compIdxs[ii]].first = rstName[ii];
floresn_[compIdxs[ii]].second.first.resize(numOutputNnc, -1);
floresn_[compIdxs[ii]].second.second.resize(numOutputNnc, 0.0);
}
}
}
}
if (auto& den = rstKeywords["DEN"]; den > 0) {
den = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
this->density_[phaseIdx].resize(bufferSize, 0.0);
}
}
if (auto& deng = rstKeywords["DENG"]; (deng > 0) && FluidSystem::phaseIsActive(gasPhaseIdx)) {
deng = 0;
this->density_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (auto& deno = rstKeywords["DENO"]; (deno > 0) && FluidSystem::phaseIsActive(oilPhaseIdx)) {
deno = 0;
this->density_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (auto& denw = rstKeywords["DENW"]; (denw > 0) && FluidSystem::phaseIsActive(waterPhaseIdx)) {
denw = 0;
this->density_[waterPhaseIdx].resize(bufferSize, 0.0);
}
const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
rstKeywords["VISC"] = 0;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) {
rstKeywords["VWAT"] = 0;
viscosity_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) {
rstKeywords["VOIL"] = 0;
viscosity_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) {
rstKeywords["VGAS"] = 0;
viscosity_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) {
rstKeywords["KRW"] = 0;
relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) {
rstKeywords["KRO"] = 0;
relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) {
rstKeywords["KRG"] = 0;
relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["PCOW"] > 0) {
rstKeywords["PCOW"] = 0;
pcow_.resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["PCOG"] > 0) {
rstKeywords["PCOG"] = 0;
pcog_.resize(bufferSize, 0.0);
}
if (rstKeywords["PBPD"] > 0) {
rstKeywords["PBPD"] = 0;
bubblePointPressure_.resize(bufferSize, 0.0);
dewPointPressure_.resize(bufferSize, 0.0);
}
// tracers
if (numTracers > 0) {
tracerConcentrations_.resize(numTracers);
for (unsigned tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
{
tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
}
}
// ROCKC
if (rstKeywords["ROCKC"] > 0) {
rstKeywords["ROCKC"] = 0;
rockCompPorvMultiplier_.resize(bufferSize, 0.0);
rockCompTransMultiplier_.resize(bufferSize, 0.0);
swMax_.resize(bufferSize, 0.0);
minimumOilPressure_.resize(bufferSize, 0.0);
overburdenPressure_.resize(bufferSize, 0.0);
}
//Warn for any unhandled keyword
if (log) {
for (auto& keyValue: rstKeywords) {
if (keyValue.second > 0) {
std::string logstring = "Keyword '";
logstring.append(keyValue.first);
logstring.append("' is unhandled for output to file.");
OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
failedCellsPb_.clear();
failedCellsPd_.clear();
// Not supported in flow legacy
if (false) {
saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0);
}
if (false) {
oilSaturationPressure_.resize(bufferSize, 0.0);
}
}
template<class FluidSystem,class Scalar>
bool EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
isOutputCreationDirective_(const std::string& keyword)
{
return (keyword == "BASIC") || (keyword == "FREQ")
|| (keyword == "RESTART") // From RPTSCHED
|| (keyword == "SAVE") || (keyword == "SFREQ"); // Not really supported
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputErrorLog(const Parallel::Communication& comm) const
{
const auto root = 0;
auto globalFailedCellsPbub = gatherv(this->failedCellsPb_, comm, root);
auto globalFailedCellsPdew = gatherv(this->failedCellsPd_, comm, root);
if (std::empty(std::get<0>(globalFailedCellsPbub)) &&
std::empty(std::get<0>(globalFailedCellsPdew)))
{
return;
}
logOutput_.error(std::get<0>(globalFailedCellsPbub),
std::get<0>(globalFailedCellsPdew));
}
template<class FluidSystem,class Scalar>
int EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
regionMax(const std::vector<int>& region,
const Parallel::Communication& comm)
{
const auto max_value = region.empty() ? 0 : *std::max_element(region.begin(), region.end());
return comm.max(max_value);
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
update(Inplace& inplace,
const std::string& region_name,
const Inplace::Phase phase,
const std::size_t ntFip,
const ScalarBuffer& values)
{
double sum = 0.0;
for (std::size_t region_number = 0; region_number < ntFip; ++region_number) {
const auto rval = static_cast<double>(values[region_number]);
inplace.add(region_name, phase, region_number + 1, rval);
sum += rval;
}
inplace.add(phase, sum);
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
makeRegionSum(Inplace& inplace,
const std::string& region_name,
const Parallel::Communication& comm) const
{
const auto& region = this->regions_.at(region_name);
const std::size_t ntFip = this->regionMax(region, comm);
auto update_inplace =
[&inplace, &region, &region_name, &comm, ntFip, this]
(const Inplace::Phase phase,
const std::vector<Scalar>& value)
{
update(inplace, region_name, phase, ntFip,
this->regionSum(value, region, ntFip, comm));
};
update_inplace(Inplace::Phase::PressurePV,
this->pressureTimesPoreVolume_);
update_inplace(Inplace::Phase::HydroCarbonPV,
this->hydrocarbonPoreVolume_);
update_inplace(Inplace::Phase::PressureHydroCarbonPV,
this->pressureTimesHydrocarbonVolume_);
update_inplace(Inplace::Phase::DynamicPoreVolume,
this->dynamicPoreVolume_);
for (const auto& phase : Inplace::phases()) {
auto fipPos = this->fip_.find(phase);
if (fipPos != this->fip_.end()) {
update_inplace(phase, fipPos->second);
}
}
}
template<class FluidSystem,class Scalar>
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
accumulateRegionSums(const Parallel::Communication& comm)
{
Inplace inplace;
for (const auto& region : this->regions_) {
makeRegionSum(inplace, region.first, comm);
}
// The first time the outputFipLog function is run we store the inplace values in
// the initialInplace_ member. This has at least two problems:
//
// o We really want the *initial* value - now we get the value after
// the first timestep.
//
// o For restarted runs this is obviously wrong.
//
// Finally it is of course not desirable to mutate state in an output
// routine.
if (!this->initialInplace_.has_value())
this->initialInplace_ = inplace;
return inplace;
}
template<class FluidSystem,class Scalar>
Scalar EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
sum(const ScalarBuffer& v)
{
return std::accumulate(v.begin(), v.end(), Scalar{0});
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
updateSummaryRegionValues(const Inplace& inplace,
std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData) const
{
// The field summary vectors should only use the FIPNUM based region sum.
{
for (const auto& phase : Inplace::phases()) {
const std::string key = "F" + EclString(phase);
if (this->summaryConfig_.hasKeyword(key)) {
miscSummaryData[key] = inplace.get(phase);
}
}
if (this->summaryConfig_.hasKeyword("FOE") && this->initialInplace_) {
miscSummaryData["FOE"] = (this->initialInplace_.value().get(Inplace::Phase::OIL) - inplace.get(Inplace::Phase::OIL))
/ this->initialInplace_.value().get(Inplace::Phase::OIL);
}
if (this->summaryConfig_.hasKeyword("FPR")) {
miscSummaryData["FPR"] =
detail::pressureAverage(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
inplace.get(Inplace::Phase::HydroCarbonPV),
inplace.get(Inplace::Phase::PressurePV),
inplace.get(Inplace::Phase::DynamicPoreVolume),
true);
}
if (this->summaryConfig_.hasKeyword("FPRP")) {
miscSummaryData["FPRP"] =
detail::pressureAverage(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
inplace.get(Inplace::Phase::HydroCarbonPV),
inplace.get(Inplace::Phase::PressurePV),
inplace.get(Inplace::Phase::DynamicPoreVolume),
false);
}
}
// The region summary vectors should loop through the FIPxxx regions to
// support the RPR__xxx summary keywords.
{
auto get_vector = [&inplace]
(const auto& node_,
const Inplace::Phase phase_)
{
return inplace.get_vector(node_.fip_region(), phase_);
};
for (const auto& phase : Inplace::phases()) {
for (const auto& node : this->regionNodes_.at(phase))
regionData[node.keyword()] = get_vector(node, phase);
}
for (const auto& node : this->RPRNodes_) {
regionData[node.keyword()] =
detail::pressureAverage(get_vector(node, Inplace::Phase::PressureHydroCarbonPV),
get_vector(node, Inplace::Phase::HydroCarbonPV),
get_vector(node, Inplace::Phase::PressurePV),
get_vector(node, Inplace::Phase::DynamicPoreVolume),
true);
}
for (const auto& node : this->RPRPNodes_) {
regionData[node.keyword()] =
detail::pressureAverage(get_vector(node, Inplace::Phase::PressureHydroCarbonPV),
get_vector(node, Inplace::Phase::HydroCarbonPV),
get_vector(node, Inplace::Phase::PressurePV),
get_vector(node, Inplace::Phase::DynamicPoreVolume),
false);
}
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
setupBlockData(std::function<bool(int)> isCartIdxOnThisRank)
{
for (const auto& node : summaryConfig_) {
if ((node.category() == SummaryConfigNode::Category::Block) &&
isCartIdxOnThisRank(node.number() - 1))
{
this->blockData_.emplace(std::piecewise_construct,
std::forward_as_tuple(node.keyword(),
node.number()),
std::forward_as_tuple(0.0));
}
}
}
template class EclGenericOutputBlackoilModule<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,double>;
} // namespace Opm