mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-24 10:10:18 -06:00
236 lines
7.7 KiB
C++
236 lines
7.7 KiB
C++
/*
|
|
Copyright 2022-2023 SINTEF AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <config.h>
|
|
|
|
#define BOOST_TEST_MODULE TestCuSeqILU0
|
|
#define BOOST_TEST_NO_MAIN
|
|
|
|
|
|
#include <boost/mpl/list.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <dune/common/parallel/mpihelper.hh>
|
|
#include <dune/istl/bcrsmatrix.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
#include <opm/simulators/linalg/cuistl/CuSeqILU0.hpp>
|
|
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
|
|
#include <opm/simulators/linalg/cuistl/PreconditionerAdapter.hpp>
|
|
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
|
|
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
|
|
using NumericTypes = boost::mpl::list<double, float>;
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(TestFiniteDifference1D, T, NumericTypes)
|
|
{
|
|
// Here we will test a simple 1D finite difference scheme for
|
|
// the Laplace equation:
|
|
//
|
|
// -\Delta u = f on [0,1]
|
|
//
|
|
// Using a central difference approximation of \Delta u, this can
|
|
// be approximated by
|
|
//
|
|
// -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i)
|
|
//
|
|
// giving rise to the matrix
|
|
//
|
|
// -2 1 0 0 ... 0 0
|
|
// 1 -2 1 0 0 ... 0
|
|
// ....
|
|
// 0 0 0 ...1 -2 1
|
|
// 0 0 0 ... 1 -2
|
|
|
|
const int N = 5;
|
|
const int nonZeroes = N * 3 - 2;
|
|
using M = Dune::FieldMatrix<T, 1, 1>;
|
|
using SpMatrix = Dune::BCRSMatrix<M>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<T, 1>>;
|
|
using CuILU0 = Opm::cuistl::CuSeqILU0<SpMatrix, Opm::cuistl::CuVector<T>, Opm::cuistl::CuVector<T>>;
|
|
|
|
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
|
|
for (auto row = B.createbegin(); row != B.createend(); ++row) {
|
|
// Add nonzeros for left neighbour, diagonal and right neighbour
|
|
if (row.index() > 0) {
|
|
row.insert(row.index() - 1);
|
|
}
|
|
row.insert(row.index());
|
|
if (row.index() < B.N() - 1) {
|
|
row.insert(row.index() + 1);
|
|
}
|
|
}
|
|
// This might not be the most elegant way of filling in a Dune sparse matrix, but it works.
|
|
for (int i = 0; i < N; ++i) {
|
|
B[i][i] = -2;
|
|
if (i < N - 1) {
|
|
B[i][i + 1] = 1;
|
|
}
|
|
|
|
if (i > 0) {
|
|
B[i][i - 1] = 1;
|
|
}
|
|
}
|
|
|
|
|
|
auto duneILU = Dune::SeqILU<SpMatrix, Vector, Vector>(B, 1.0);
|
|
|
|
auto cuILU = Opm::cuistl::PreconditionerAdapter<Vector, Vector, CuILU0>(std::make_shared<CuILU0>(B, 1.0));
|
|
|
|
// check for the standard basis {e_i}
|
|
// (e_i=(0,...,0, 1 (i-th place), 0, ..., 0))
|
|
for (int i = 0; i < N; ++i) {
|
|
Vector inputVector(N);
|
|
inputVector[i][0] = 1.0;
|
|
Vector outputVectorDune(N);
|
|
Vector outputVectorCuistl(N);
|
|
duneILU.apply(outputVectorDune, inputVector);
|
|
cuILU.apply(outputVectorCuistl, inputVector);
|
|
|
|
for (int component = 0; component < N; ++component) {
|
|
BOOST_CHECK_CLOSE(outputVectorDune[component][0],
|
|
outputVectorCuistl[component][0],
|
|
std::numeric_limits<T>::epsilon() * 1000);
|
|
}
|
|
}
|
|
|
|
// Now we check that we can update the matrix. We basically just negate B
|
|
B *= -1.0;
|
|
auto duneILUNew = Dune::SeqILU<SpMatrix, Vector, Vector>(B, 1.0);
|
|
cuILU.update();
|
|
// check for the standard basis {e_i}
|
|
// (e_i=(0,...,0, 1 (i-th place), 0, ..., 0))
|
|
for (int i = 0; i < N; ++i) {
|
|
Vector inputVector(N);
|
|
inputVector[i][0] = 1.0;
|
|
Vector outputVectorDune(N);
|
|
Vector outputVectorCuistl(N);
|
|
duneILUNew.apply(outputVectorDune, inputVector);
|
|
cuILU.apply(outputVectorCuistl, inputVector);
|
|
|
|
for (int component = 0; component < N; ++component) {
|
|
BOOST_CHECK_CLOSE(outputVectorDune[component][0],
|
|
outputVectorCuistl[component][0],
|
|
std::numeric_limits<T>::epsilon() * 1000);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(TestFiniteDifferenceBlock2, T, NumericTypes)
|
|
{
|
|
// Here we will test a simple 1D finite difference scheme for
|
|
// the Laplace equation:
|
|
//
|
|
// -\Delta u = f on [0,1]
|
|
//
|
|
// Using a central difference approximation of \Delta u, this can
|
|
// be approximated by
|
|
//
|
|
// -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i)
|
|
//
|
|
// giving rise to the matrix
|
|
//
|
|
// -2 1 0 0 ... 0 0
|
|
// 1 -2 1 0 0 ... 0
|
|
// ....
|
|
// 0 0 0 ...1 -2 1
|
|
// 0 0 0 ... 1 -2
|
|
|
|
const int N = 5;
|
|
const int nonZeroes = N * 3 - 2;
|
|
using M = Dune::FieldMatrix<T, 2, 2>;
|
|
using SpMatrix = Dune::BCRSMatrix<M>;
|
|
using Vector = Dune::BlockVector<Dune::FieldVector<T, 2>>;
|
|
using CuILU0 = Opm::cuistl::CuSeqILU0<SpMatrix, Opm::cuistl::CuVector<T>, Opm::cuistl::CuVector<T>>;
|
|
|
|
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
|
|
for (auto row = B.createbegin(); row != B.createend(); ++row) {
|
|
row.insert(row.index());
|
|
if (row.index() < N - 1) {
|
|
row.insert(row.index() + 1);
|
|
}
|
|
if (row.index() > 0) {
|
|
row.insert(row.index() - 1);
|
|
}
|
|
}
|
|
// This might not be the most elegant way of filling in a Dune sparse matrix, but it works.
|
|
for (int i = 0; i < N; ++i) {
|
|
B[i][i][0][0] = -2;
|
|
B[i][i][1][1] = -2;
|
|
B[i][i][0][1] = 1;
|
|
B[i][i][1][0] = 1;
|
|
}
|
|
|
|
|
|
auto duneILU = Dune::SeqILU<SpMatrix, Vector, Vector>(B, 1.0);
|
|
|
|
auto cuILU = Opm::cuistl::PreconditionerAdapter<Vector, Vector, CuILU0>(std::make_shared<CuILU0>(B, 1.0));
|
|
|
|
// check for the standard basis {e_i}
|
|
// (e_i=(0,...,0, 1 (i-th place), 0, ..., 0))
|
|
for (int i = 0; i < N; ++i) {
|
|
Vector inputVector(N);
|
|
inputVector[i][0] = 1.0;
|
|
Vector outputVectorDune(N);
|
|
Vector outputVectorCuistl(N);
|
|
duneILU.apply(outputVectorDune, inputVector);
|
|
cuILU.apply(outputVectorCuistl, inputVector);
|
|
|
|
for (int component = 0; component < N; ++component) {
|
|
BOOST_CHECK_CLOSE(outputVectorDune[component][0],
|
|
outputVectorCuistl[component][0],
|
|
std::numeric_limits<T>::epsilon() * 1000);
|
|
}
|
|
}
|
|
|
|
// Now we check that we can update the matrix. We basically just negate B
|
|
B *= -1.0;
|
|
auto duneILUNew = Dune::SeqILU<SpMatrix, Vector, Vector>(B, 1.0);
|
|
cuILU.update();
|
|
// check for the standard basis {e_i}
|
|
// (e_i=(0,...,0, 1 (i-th place), 0, ..., 0))
|
|
for (int i = 0; i < N; ++i) {
|
|
Vector inputVector(N);
|
|
inputVector[i][0] = 1.0;
|
|
Vector outputVectorDune(N);
|
|
Vector outputVectorCuistl(N);
|
|
duneILUNew.apply(outputVectorDune, inputVector);
|
|
cuILU.apply(outputVectorCuistl, inputVector);
|
|
|
|
for (int component = 0; component < N; ++component) {
|
|
BOOST_CHECK_CLOSE(outputVectorDune[component][0],
|
|
outputVectorCuistl[component][0],
|
|
std::numeric_limits<T>::epsilon() * 1000);
|
|
}
|
|
}
|
|
}
|
|
bool
|
|
init_unit_test_func()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int
|
|
main(int argc, char** argv)
|
|
{
|
|
[[maybe_unused]] const auto& helper = Dune::MPIHelper::instance(argc, argv);
|
|
boost::unit_test::unit_test_main(&init_unit_test_func, argc, argv);
|
|
}
|