opm-simulators/opm/models/blackoil/blackoilfoammodules.hh
2020-03-04 14:57:17 +01:00

692 lines
28 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to extend the black-oil model to include the effects of foam.
*/
#ifndef EWOMS_BLACK_OIL_FOAM_MODULE_HH
#define EWOMS_BLACK_OIL_FOAM_MODULE_HH
#include "blackoilproperties.hh"
//#include <opm/models/io/vtkblackoilfoammodule.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Tabulated1DFunction.hpp>
//#include <opm/material/common/IntervalTabulated2DFunction.hpp>
#if HAVE_ECL_INPUT
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/FoamadsTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/FoammobTable.hpp>
#endif
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <string>
#include <math.h>
namespace Opm {
/*!
* \ingroup BlackOil
* \brief Contains the high level supplements required to extend the black oil
* model to include the effects of foam.
*/
template <class TypeTag, bool enableFoamV = GET_PROP_VALUE(TypeTag, EnableFoam)>
class BlackOilFoamModule
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef typename Opm::Tabulated1DFunction<Scalar> TabulatedFunction;
static constexpr unsigned foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned contiFoamEqIdx = Indices::contiFoamEqIdx;
static constexpr unsigned gasPhaseIdx = FluidSystem::gasPhaseIdx;
static constexpr unsigned enableFoam = enableFoamV;
static constexpr bool enableVtkOutput = GET_PROP_VALUE(TypeTag, EnableVtkOutput);
static constexpr unsigned numEq = GET_PROP_VALUE(TypeTag, NumEq);
static constexpr unsigned numPhases = FluidSystem::numPhases;
public:
// a struct containing constants to calculate change to relative permeability,
// based on model (1-9) in Table 1 of
// Kun Ma, Guangwei Ren, Khalid Mateen, Danielle Morel, and Philippe Cordelier:
// "Modeling techniques for foam flow in porous media", SPE Journal, 20(03):453470, jun 2015.
// The constants are provided by various deck keywords as shown in the comments below.
struct FoamCoefficients {
Scalar fm_min = 1e-20; // FOAMFSC
Scalar fm_mob = 1.0; // FOAMFRM
Scalar fm_surf = 1.0; // FOAMFSC
Scalar ep_surf = 1.0; // FOAMFSC
Scalar fm_oil = 1.0; // FOAMFSO
Scalar fl_oil = 0.0; // FOAMFSO
Scalar ep_oil = 0.0; // FOAMFSO
Scalar fm_cap = 1.0; // FOAMFCN
Scalar ep_cap = 0.0; // FOAMFCN
Scalar fm_dry = 1.0; // FOAMFSW
Scalar ep_dry = 0.0; // FOAMFSW
};
#if HAVE_ECL_INPUT
/*!
* \brief Initialize all internal data structures needed by the foam module
*/
static void initFromState(const Opm::EclipseState& eclState)
{
// some sanity checks: if foam is enabled, the FOAM keyword must be
// present, if foam is disabled the keyword must not be present.
if (enableFoam && !eclState.runspec().phases().active(Phase::FOAM)) {
throw std::runtime_error("Non-trivial foam treatment requested at compile time, but "
"the deck does not contain the FOAM keyword");
}
else if (!enableFoam && eclState.runspec().phases().active(Phase::FOAM)) {
throw std::runtime_error("Foam treatment disabled at compile time, but the deck "
"contains the FOAM keyword");
}
if (!eclState.runspec().phases().active(Phase::FOAM)) {
return; // foam treatment is supposed to be disabled
}
// Check that only implemented options are used.
// We only support the default values of FOAMOPTS (GAS, TAB).
if (eclState.getInitConfig().getFoamConfig().getTransportPhase() != Phase::GAS) {
throw std::runtime_error("In FOAMOPTS, only GAS is allowed for the transport phase.");
}
if (eclState.getInitConfig().getFoamConfig().getMobilityModel() != FoamConfig::MobilityModel::TAB) {
throw std::runtime_error("In FOAMOPTS, only TAB is allowed for the gas mobility factor reduction model.");
}
const auto& tableManager = eclState.getTableManager();
const unsigned int numSatRegions = tableManager.getTabdims().getNumSatTables();
setNumSatRegions(numSatRegions);
const unsigned int numPvtRegions = tableManager.getTabdims().getNumPVTTables();
setNumPvtRegions(numPvtRegions);
// Get and check FOAMROCK data.
const Opm::FoamConfig& foamConf = eclState.getInitConfig().getFoamConfig();
if (numSatRegions != foamConf.size()) {
throw std::runtime_error("Inconsistent sizes, number of saturation regions differ from the number of elements "
"in FoamConfig, which typically corresponds to the number of records in FOAMROCK.");
}
// Get and check FOAMADS data.
const auto& foamadsTables = tableManager.getFoamadsTables();
if (foamadsTables.empty()) {
throw std::runtime_error("FOAMADS must be specified in FOAM runs");
}
if (numSatRegions != foamadsTables.size()) {
throw std::runtime_error("Inconsistent sizes, number of saturation regions differ from the "
"number of FOAMADS tables.");
}
// Set data that vary with saturation region.
for (std::size_t satReg = 0; satReg < numSatRegions; ++satReg) {
const auto& rec = foamConf.getRecord(satReg);
foamCoefficients_[satReg] = FoamCoefficients();
foamCoefficients_[satReg].fm_min = rec.minimumSurfactantConcentration();
foamCoefficients_[satReg].fm_surf = rec.referenceSurfactantConcentration();
foamCoefficients_[satReg].ep_surf = rec.exponent();
foamRockDensity_[satReg] = rec.rockDensity();
foamAllowDesorption_[satReg] = rec.allowDesorption();
const auto& foamadsTable = foamadsTables.template getTable<Opm::FoamadsTable>(satReg);
const auto& conc = foamadsTable.getFoamConcentrationColumn();
const auto& ads = foamadsTable.getAdsorbedFoamColumn();
adsorbedFoamTable_[satReg].setXYContainers(conc, ads);
}
// Get and check FOAMMOB data.
const auto& foammobTables = tableManager.getFoammobTables();
if (foammobTables.empty()) {
// When in the future adding support for the functional
// model, FOAMMOB will not be required anymore (functional
// family of keywords can be used instead, FOAMFSC etc.).
throw std::runtime_error("FOAMMOB must be specified in FOAM runs");
}
if (numPvtRegions != foammobTables.size()) {
throw std::runtime_error("Inconsistent sizes, number of PVT regions differ from the "
"number of FOAMMOB tables.");
}
// Set data that vary with PVT region.
for (std::size_t pvtReg = 0; pvtReg < numPvtRegions; ++pvtReg) {
const auto& foammobTable = foammobTables.template getTable<Opm::FoammobTable>(pvtReg);
const auto& conc = foammobTable.getFoamConcentrationColumn();
const auto& mobMult = foammobTable.getMobilityMultiplierColumn();
gasMobilityMultiplierTable_[pvtReg].setXYContainers(conc, mobMult);
}
}
#endif
/*!
* \brief Specify the number of saturation regions.
*/
static void setNumSatRegions(unsigned numRegions)
{
foamCoefficients_.resize(numRegions);
foamRockDensity_.resize(numRegions);
foamAllowDesorption_.resize(numRegions);
adsorbedFoamTable_.resize(numRegions);
}
/*!
* \brief Specify the number of PVT regions.
*/
static void setNumPvtRegions(unsigned numRegions)
{
gasMobilityMultiplierTable_.resize(numRegions);
}
/*!
* \brief Register all run-time parameters for the black-oil foam module.
*/
static void registerParameters()
{
if (!enableFoam)
// foam has been disabled at compile time
return;
//Opm::VtkBlackOilFoamModule<TypeTag>::registerParameters();
}
/*!
* \brief Register all foam specific VTK and ECL output modules.
*/
static void registerOutputModules(Model& model OPM_UNUSED,
Simulator& simulator OPM_UNUSED)
{
if (!enableFoam)
// foam have been disabled at compile time
return;
if (enableVtkOutput) {
Opm::OpmLog::warning("VTK output requested, currently unsupported by the foam module.");
}
//model.addOutputModule(new Opm::VtkBlackOilFoamModule<TypeTag>(simulator));
}
static bool primaryVarApplies(unsigned pvIdx)
{
if (!enableFoam) {
return false;
} else {
return pvIdx == foamConcentrationIdx;
}
}
static std::string primaryVarName(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
return "foam_concentration";
}
static Scalar primaryVarWeight(unsigned pvIdx OPM_OPTIM_UNUSED)
{
assert(primaryVarApplies(pvIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
static bool eqApplies(unsigned eqIdx)
{
if (!enableFoam)
return false;
return eqIdx == contiFoamEqIdx;
}
static std::string eqName(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
return "conti^foam";
}
static Scalar eqWeight(unsigned eqIdx OPM_OPTIM_UNUSED)
{
assert(eqApplies(eqIdx));
// TODO: it may be beneficial to chose this differently.
return static_cast<Scalar>(1.0);
}
// must be called after water storage is computed
template <class LhsEval>
static void addStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{
if (!enableFoam)
return;
const auto& fs = intQuants.fluidState();
LhsEval surfaceVolumeFreeGas =
Toolbox::template decay<LhsEval>(fs.saturation(gasPhaseIdx))
* Toolbox::template decay<LhsEval>(fs.invB(gasPhaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
// Avoid singular matrix if no gas is present.
surfaceVolumeFreeGas = Opm::max(surfaceVolumeFreeGas, 1e-10);
// Foam/surfactant in gas phase.
const LhsEval gasFoam = surfaceVolumeFreeGas
* Toolbox::template decay<LhsEval>(intQuants.foamConcentration());
// Adsorbed foam/surfactant.
const LhsEval adsorbedFoam =
Toolbox::template decay<LhsEval>(1.0 - intQuants.porosity())
* Toolbox::template decay<LhsEval>(intQuants.foamRockDensity())
* Toolbox::template decay<LhsEval>(intQuants.foamAdsorbed());
LhsEval accumulationFoam = gasFoam + adsorbedFoam;
storage[contiFoamEqIdx] += accumulationFoam;
}
static void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
if (!enableFoam) {
return;
}
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
const unsigned upIdx = extQuants.upstreamIndex(FluidSystem::gasPhaseIdx);
const unsigned inIdx = extQuants.interiorIndex();
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
// The effect of the gas mobility reduction factor is
// incorporated in the mobility, so the oil (if vaporized oil
// is active) and gas fluxes do not need modification here.
if (upIdx == inIdx) {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*up.fluidState().invB(gasPhaseIdx)
*up.foamConcentration();
} else {
flux[contiFoamEqIdx] =
extQuants.volumeFlux(gasPhaseIdx)
*Opm::decay<Scalar>(up.fluidState().invB(gasPhaseIdx))
*Opm::decay<Scalar>(up.foamConcentration());
}
}
/*!
* \brief Return how much a Newton-Raphson update is considered an error
*/
static Scalar computeUpdateError(const PrimaryVariables& oldPv OPM_UNUSED,
const EqVector& delta OPM_UNUSED)
{
// do not consider the change of foam primary variables for convergence
// TODO: maybe this should be changed
return static_cast<Scalar>(0.0);
}
template <class DofEntity>
static void serializeEntity(const Model& model, std::ostream& outstream, const DofEntity& dof)
{
if (!enableFoam)
return;
unsigned dofIdx = model.dofMapper().index(dof);
const PrimaryVariables& priVars = model.solution(/*timeIdx=*/0)[dofIdx];
outstream << priVars[foamConcentrationIdx];
}
template <class DofEntity>
static void deserializeEntity(Model& model, std::istream& instream, const DofEntity& dof)
{
if (!enableFoam)
return;
unsigned dofIdx = model.dofMapper().index(dof);
PrimaryVariables& priVars0 = model.solution(/*timeIdx=*/0)[dofIdx];
PrimaryVariables& priVars1 = model.solution(/*timeIdx=*/1)[dofIdx];
instream >> priVars0[foamConcentrationIdx];
// set the primary variables for the beginning of the current time step.
priVars1[foamConcentrationIdx] = priVars0[foamConcentrationIdx];
}
static const Scalar foamRockDensity(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return foamRockDensity_[satnumRegionIdx];
}
static bool foamAllowDesorption(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return foamAllowDesorption_[satnumRegionIdx];
}
static const TabulatedFunction& adsorbedFoamTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return adsorbedFoamTable_[satnumRegionIdx];
}
static const TabulatedFunction& gasMobilityMultiplierTable(const ElementContext& elemCtx,
unsigned scvIdx,
unsigned timeIdx)
{
unsigned pvtnumRegionIdx = elemCtx.problem().pvtRegionIndex(elemCtx, scvIdx, timeIdx);
return gasMobilityMultiplierTable_[pvtnumRegionIdx];
}
static const FoamCoefficients& foamCoefficients(const ElementContext& elemCtx,
const unsigned scvIdx,
const unsigned timeIdx)
{
unsigned satnumRegionIdx = elemCtx.problem().satnumRegionIndex(elemCtx, scvIdx, timeIdx);
return foamCoefficients_[satnumRegionIdx];
}
template<class Serializer>
static std::size_t packSize(Serializer& serializer)
{
std::size_t size = serializer.packSize(foamRockDensity_) +
serializer.packSize(foamAllowDesorption_) +
serializer.packSize(adsorbedFoamTable_) +
serializer.packSize(gasMobilityMultiplierTable_);
size += serializer.packSize(foamCoefficients_.size());
for (const auto& it : foamCoefficients_) {
size += serializer.packSize(it.fm_min);
size += serializer.packSize(it.fm_mob);
size += serializer.packSize(it.fm_surf);
size += serializer.packSize(it.ep_surf);
size += serializer.packSize(it.fm_oil);
size += serializer.packSize(it.fl_oil);
size += serializer.packSize(it.ep_oil);
size += serializer.packSize(it.fm_cap);
size += serializer.packSize(it.ep_cap);
size += serializer.packSize(it.fm_dry);
size += serializer.packSize(it.ep_dry);
}
return size;
}
template<class Serializer>
static void pack(std::vector<char>& buffer, int& position,
Serializer& serializer)
{
serializer.pack(foamRockDensity_, buffer, position);
serializer.pack(foamAllowDesorption_, buffer, position);
serializer.pack(adsorbedFoamTable_, buffer, position);
serializer.pack(gasMobilityMultiplierTable_, buffer, position);
serializer.pack(foamCoefficients_.size(), buffer, position);
for (const auto& it : foamCoefficients_) {
serializer.pack(it.fm_min, buffer, position);
serializer.pack(it.fm_mob, buffer, position);
serializer.pack(it.fm_surf, buffer, position);
serializer.pack(it.ep_surf, buffer, position);
serializer.pack(it.fm_oil, buffer, position);
serializer.pack(it.fl_oil, buffer, position);
serializer.pack(it.ep_oil, buffer, position);
serializer.pack(it.fm_cap, buffer, position);
serializer.pack(it.ep_cap, buffer, position);
serializer.pack(it.fm_dry, buffer, position);
serializer.pack(it.ep_dry, buffer, position);
}
}
template<class Serializer>
static void unpack(std::vector<char>& buffer, int& position,
Serializer& serializer)
{
serializer.unpack(foamRockDensity_, buffer, position);
serializer.unpack(foamAllowDesorption_, buffer, position);
serializer.unpack(adsorbedFoamTable_, buffer, position);
serializer.unpack(gasMobilityMultiplierTable_, buffer, position);
size_t size;
serializer.unpack(size, buffer, position);
foamCoefficients_.resize(size);
for (auto& it : foamCoefficients_) {
serializer.unpack(it.fm_min, buffer, position);
serializer.unpack(it.fm_mob, buffer, position);
serializer.unpack(it.fm_surf, buffer, position);
serializer.unpack(it.ep_surf, buffer, position);
serializer.unpack(it.fm_oil, buffer, position);
serializer.unpack(it.fl_oil, buffer, position);
serializer.unpack(it.ep_oil, buffer, position);
serializer.unpack(it.fm_cap, buffer, position);
serializer.unpack(it.ep_cap, buffer, position);
serializer.unpack(it.fm_dry, buffer, position);
serializer.unpack(it.ep_dry, buffer, position);
}
}
private:
static std::vector<Scalar> foamRockDensity_;
static std::vector<bool> foamAllowDesorption_;
static std::vector<FoamCoefficients> foamCoefficients_;
static std::vector<TabulatedFunction> adsorbedFoamTable_;
static std::vector<TabulatedFunction> gasMobilityMultiplierTable_;
};
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::Scalar>
BlackOilFoamModule<TypeTag, enableFoam>::foamRockDensity_;
template <class TypeTag, bool enableFoam>
std::vector<bool>
BlackOilFoamModule<TypeTag, enableFoam>::foamAllowDesorption_;
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::FoamCoefficients>
BlackOilFoamModule<TypeTag, enableFoam>::foamCoefficients_;
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::TabulatedFunction>
BlackOilFoamModule<TypeTag, enableFoam>::adsorbedFoamTable_;
template <class TypeTag, bool enableFoam>
std::vector<typename BlackOilFoamModule<TypeTag, enableFoam>::TabulatedFunction>
BlackOilFoamModule<TypeTag, enableFoam>::gasMobilityMultiplierTable_;
/*!
* \ingroup BlackOil
* \class Opm::BlackOilFoamIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the equations needed by the
* polymers extension of the black-oil model.
*/
template <class TypeTag, bool enableFoam = GET_PROP_VALUE(TypeTag, EnableFoam)>
class BlackOilFoamIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef BlackOilFoamModule<TypeTag> FoamModule;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr unsigned waterPhaseIdx = FluidSystem::waterPhaseIdx;
static constexpr unsigned oilPhaseIdx = FluidSystem::oilPhaseIdx;
static constexpr int gasPhaseIdx = FluidSystem::gasPhaseIdx;
public:
/*!
* \brief Update the intensive properties needed to handle polymers from the
* primary variables
*
*/
void foamPropertiesUpdate_(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
const PrimaryVariables& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
foamConcentration_ = priVars.makeEvaluation(foamConcentrationIdx, timeIdx);
const auto& fs = asImp_().fluidState_;
// Compute gas mobility reduction factor
Evaluation mobilityReductionFactor = 1.0;
if (false) {
// The functional model is used.
// TODO: allow this model.
// In order to do this we must allow transport to be in the water phase, not just the gas phase.
const auto& foamCoefficients = FoamModule::foamCoefficients(elemCtx, dofIdx, timeIdx);
const Scalar fm_mob = foamCoefficients.fm_mob;
const Scalar fm_surf = foamCoefficients.fm_surf;
const Scalar ep_surf = foamCoefficients.ep_surf;
const Scalar fm_oil = foamCoefficients.fm_oil;
const Scalar fl_oil = foamCoefficients.fl_oil;
const Scalar ep_oil = foamCoefficients.ep_oil;
const Scalar fm_dry = foamCoefficients.fm_dry;
const Scalar ep_dry = foamCoefficients.ep_dry;
const Scalar fm_cap = foamCoefficients.fm_cap;
const Scalar ep_cap = foamCoefficients.ep_cap;
const Evaluation C_surf = foamConcentration_;
const Evaluation Ca = 1e10; // TODO: replace with proper capillary number.
const Evaluation S_o = fs.saturation(oilPhaseIdx);
const Evaluation S_w = fs.saturation(waterPhaseIdx);
Evaluation F1 = pow(C_surf/fm_surf, ep_surf);
Evaluation F2 = pow((fm_oil-S_o)/(fm_oil-fl_oil), ep_oil);
Evaluation F3 = pow(fm_cap/Ca, ep_cap);
Evaluation F7 = 0.5 + atan(ep_dry*(S_w-fm_dry))/M_PI;
mobilityReductionFactor = 1./(1. + fm_mob*F1*F2*F3*F7);
} else {
// The tabular model is used.
// Note that the current implementation only includes the effect of foam concentration (FOAMMOB),
// and not the optional pressure dependence (FOAMMOBP) or shear dependence (FOAMMOBS).
const auto& gasMobilityMultiplier = FoamModule::gasMobilityMultiplierTable(elemCtx, dofIdx, timeIdx);
mobilityReductionFactor = gasMobilityMultiplier.eval(foamConcentration_, /* extrapolate = */ true);
}
// adjust gas mobility
asImp_().mobility_[gasPhaseIdx] *= mobilityReductionFactor;
foamRockDensity_ = FoamModule::foamRockDensity(elemCtx, dofIdx, timeIdx);
const auto& adsorbedFoamTable = FoamModule::adsorbedFoamTable(elemCtx, dofIdx, timeIdx);
foamAdsorbed_ = adsorbedFoamTable.eval(foamConcentration_, /*extrapolate=*/true);
if (!FoamModule::foamAllowDesorption(elemCtx, dofIdx, timeIdx)) {
throw std::runtime_error("Foam module does not support the 'no desorption' option.");
}
}
const Evaluation& foamConcentration() const
{ return foamConcentration_; }
Scalar foamRockDensity() const
{ return foamRockDensity_; }
const Evaluation& foamAdsorbed() const
{ return foamAdsorbed_; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
Evaluation foamConcentration_;
Scalar foamRockDensity_;
Evaluation foamAdsorbed_;
};
template <class TypeTag>
class BlackOilFoamIntensiveQuantities<TypeTag, false>
{
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
void foamPropertiesUpdate_(const ElementContext& elemCtx OPM_UNUSED,
unsigned scvIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
const Evaluation& foamConcentration() const
{ throw std::runtime_error("foamConcentration() called but foam is disabled"); }
Scalar foamRockDensity() const
{ throw std::runtime_error("foamRockDensity() called but foam is disabled"); }
Scalar foamAdsorbed() const
{ throw std::runtime_error("foamAdsorbed() called but foam is disabled"); }
};
} // namespace Opm
#endif