opm-simulators/tests/models/test_quadrature.cpp
2022-11-14 16:35:42 +01:00

358 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \brief A test for numerical integration using the vertex-centered finite
* volume geometries.
*/
#include "config.h"
#include <dune/common/exceptions.hh>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/vtk/vtkwriter.hh>
#include <dune/grid/common/mcmgmapper.hh>
#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#if HAVE_MPI
template<int dim, Dune::ALUGridElementType elType>
using AluGrid = Dune::ALUGrid<dim, dim, elType, Dune::nonconforming, Dune::ALUGridMPIComm>;
#else
template<int dim, Dune::ALUGridElementType elType>
using AluGrid = Dune::ALUGrid<dim, dim, elType, Dune::nonconforming, Dune::ALUGridNoComm>;
#endif //HAVE_MPI
#endif
#include <dune/common/version.hh>
#include <dune/geometry/quadraturerules.hh>
#include <opm/models/discretization/vcfv/vcfvstencil.hh>
const unsigned dim = 3;
using Scalar = double;
using QuadratureGeom = Opm::QuadrialteralQuadratureGeometry<Scalar, dim>;
using LocalPosition = QuadratureGeom::LocalPosition;
using GlobalPosition = QuadratureGeom::GlobalPosition;
// function prototypes
GlobalPosition::field_type f(const GlobalPosition &pos);
void testIdenityMapping();
template <class Grid>
void writeTetrahedronSubControlVolumes(const Grid &grid);
void testTetrahedron();
template <class Grid>
void writeCubeSubControlVolumes(const Grid &grid);
void testCube();
void testQuadrature();
GlobalPosition::field_type f(const GlobalPosition &pos)
{
GlobalPosition::field_type result = 1;
for (unsigned i = 0; i < GlobalPosition::dimension; ++i)
result *= pos[i];
return result;
}
void testIdenityMapping()
{
QuadratureGeom foo;
Scalar corners[][3] = { { 0, 0, 0 },
{ 1, 0, 0 },
{ 0, 1, 0 },
{ 1, 1, 0 },
{ 0, 0, 1 },
{ 1, 0, 1 },
{ 0, 1, 1 },
{ 1, 1, 1 } };
foo.setCorners(corners, 8);
std::cout << "testing identity mapping...\n";
unsigned n = 100;
for (unsigned i = 0; i < n; ++i) {
for (unsigned j = 0; j < n; ++j) {
for (unsigned k = 0; k < n; ++k) {
LocalPosition localPos;
localPos[0] = Scalar(i) / (n - 1);
localPos[1] = Scalar(j) / (n - 1);
localPos[2] = Scalar(k) / (n - 1);
GlobalPosition globalPos = foo.global(localPos);
GlobalPosition diff(localPos);
diff -= globalPos;
assert(diff.two_norm() < 1e-10);
}
}
}
}
template <class Grid>
void writeTetrahedronSubControlVolumes([[maybe_unused]] const Grid& grid)
{
#if HAVE_DUNE_ALUGRID
using GridView = typename Grid::LeafGridView;
using Grid2 = AluGrid<dim, Dune::cube>;
using GridView2 = typename Grid2::LeafGridView;
using GridFactory2 = Dune::GridFactory<Grid2>;
GridFactory2 gf2;
const auto &gridView = grid.leafView();
using Stencil = Opm::VcfvStencil<Scalar, GridView>;
using Mapper = typename Stencil :: Mapper;
Mapper mapper(gridView, Dune::mcmgVertexLayout());
Stencil stencil(gridView, mapper);
auto eIt = gridView.template begin<0>();
const auto &eEndIt = gridView.template end<0>();
for (; eIt != eEndIt; ++eIt) {
stencil.update(*eIt);
for (unsigned scvIdx = 0; scvIdx < stencil.numDof(); ++scvIdx) {
const auto &scvLocalGeom = stencil.subControlVolume(scvIdx).localGeometry();
for (unsigned i = 0; i < scvLocalGeom.numCorners; ++i) {
GlobalPosition pos(
eIt->geometry().global(scvLocalGeom.corner(i)));
gf2.insertVertex(pos);
}
}
}
unsigned cornerOffset = 0;
eIt = gridView.template begin<0>();
for (; eIt != eEndIt; ++eIt) {
stencil.update(*eIt);
for (unsigned scvIdx = 0; scvIdx < stencil.numDof(); ++scvIdx) {
const auto &scvLocalGeom = stencil.subControlVolume(scvIdx).localGeometry();
std::vector<unsigned> vertexIndices;
for (unsigned i = 0; i < scvLocalGeom.numCorners; ++i) {
vertexIndices.push_back(cornerOffset);
++cornerOffset;
}
gf2.insertElement(Dune::GeometryType(/*topologyId=*/(1 << dim) - 1, dim),
vertexIndices);
}
}
const auto grid2 = gf2.createGrid();
using VtkWriter = Dune::VTKWriter<GridView2>;
VtkWriter writer(grid2->leafView(), Dune::VTK::conforming);
writer.write("tetrahedron-scvs", Dune::VTK::ascii);
#endif // HAVE_DUNE_ALUGRID
}
void testTetrahedron()
{
#if HAVE_DUNE_ALUGRID
using Grid = AluGrid<dim, Dune::simplex>;
using GridFactory = Dune::GridFactory<Grid>;
GridFactory gf;
Scalar corners[][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
for (unsigned i = 0; i < sizeof(corners) / sizeof(corners[0]); ++i) {
GlobalPosition pos;
for (unsigned j = 0; j < dim; ++j)
pos[j] = corners[i][j];
gf.insertVertex(pos);
}
std::vector<unsigned int> v = { 0, 1, 2, 3 };
// in Dune >= 2.6 topologyIds seem to be opaque integers. WTF!?
gf.insertElement(Dune::GeometryType(/*topologyId=*/0, dim), v);
const auto grid = gf.createGrid();
// write the sub-control volumes to a VTK file.
writeTetrahedronSubControlVolumes(*grid);
#endif // HAVE_DUNE_ALUGRID
}
template <class Grid>
void writeCubeSubControlVolumes([[maybe_unused]] const Grid& grid)
{
#if HAVE_DUNE_ALUGRID
using GridView = typename Grid::LeafGridView;
using Grid2 = AluGrid<dim, Dune::cube>;
using GridView2 = typename Grid2::LeafGridView;
using GridFactory2 = Dune::GridFactory<Grid2>;
using Stencil = Opm::VcfvStencil<Scalar, GridView>;
GridFactory2 gf2;
const auto &gridView = grid.leafView();
using VertexMapper = Dune::MultipleCodimMultipleGeomTypeMapper<GridView>;
VertexMapper vertexMapper(gridView, Dune::mcmgVertexLayout());
Stencil stencil(gridView, vertexMapper);
auto eIt = gridView.template begin<0>();
const auto &eEndIt = gridView.template end<0>();
for (; eIt != eEndIt; ++eIt) {
stencil.update(*eIt);
for (unsigned scvIdx = 0; scvIdx < stencil.numDof(); ++scvIdx) {
const auto &scvLocalGeom = stencil.subControlVolume(scvIdx).localGeometry();
for (unsigned i = 0; i < scvLocalGeom.numCorners; ++i) {
GlobalPosition pos(
eIt->geometry().global(scvLocalGeom.corner(i)));
gf2.insertVertex(pos);
}
}
}
unsigned cornerOffset = 0;
eIt = gridView.template begin<0>();
for (; eIt != eEndIt; ++eIt) {
stencil.update(*eIt);
for (unsigned scvIdx = 0; scvIdx < stencil.numDof(); ++scvIdx) {
const auto &scvLocalGeom = stencil.subControlVolume(scvIdx).localGeometry();
std::vector<unsigned int> vertexIndices;
for (unsigned i = 0; i < scvLocalGeom.numCorners; ++i) {
vertexIndices.push_back(cornerOffset);
++cornerOffset;
}
gf2.insertElement(Dune::GeometryType(/*topologyId=*/(1 << dim) - 1, dim),
vertexIndices);
}
}
const auto grid2 = gf2.createGrid();
using VtkWriter = Dune::VTKWriter<GridView2>;
VtkWriter writer(grid2->leafView(), Dune::VTK::conforming);
writer.write("cube-scvs", Dune::VTK::ascii);
#endif // HAVE_DUNE_ALUGRID
}
void testCube()
{
#if HAVE_DUNE_ALUGRID
using Grid = AluGrid<dim, Dune::cube>;
using GridFactory = Dune::GridFactory<Grid>;
GridFactory gf;
Scalar corners[][3] = { { 0, 0, 0 },
{ 1, 0, 0 },
{ 0, 2, 0 },
{ 3, 3, 0 },
{ 0, 0, 4 },
{ 5, 0, 5 },
{ 0, 6, 6 },
{ 7, 7, 7 }, };
for (unsigned i = 0; i < sizeof(corners) / sizeof(corners[0]); ++i) {
GlobalPosition pos;
for (unsigned j = 0; j < dim; ++j)
pos[j] = corners[i][j];
gf.insertVertex(pos);
}
std::vector<unsigned int> v = { 0, 1, 2, 3, 4, 5, 6, 7 };
// in Dune >= 2.6 topologyIds seem to be opaque integers. WTF!?
gf.insertElement(Dune::GeometryType((1 << dim) - 1, dim), v);
const auto grid = gf.createGrid();
// write the sub-control volumes to a VTK file.
writeCubeSubControlVolumes(*grid);
#endif // HAVE_DUNE_ALUGRID
}
void testQuadrature()
{
std::cout << "testing SCV quadrature...\n";
std::array<int, dim> cellRes;
std::fill(cellRes.begin(), cellRes.end(), 10);
GlobalPosition upperRight(1.0);
using Grid = Dune::YaspGrid<dim>;
using GridView = Grid::LeafGridView;
Grid grid(upperRight, cellRes);
// compute approximate integral
auto gridView = grid.leafGridView();
auto eIt = gridView.begin<0>();
const auto eEndIt = gridView.end<0>();
Scalar result = 0;
// instanciate a stencil
using Stencil = Opm::VcfvStencil<Scalar, GridView>;
using Mapper = typename Stencil :: Mapper;
Mapper mapper(gridView, Dune::mcmgVertexLayout());
Stencil stencil(gridView, mapper);
for (; eIt != eEndIt; ++eIt) {
const auto &elemGeom = eIt->geometry();
stencil.update(*eIt);
// loop over all sub-control volumes
for (unsigned scvIdx = 0; scvIdx < stencil.numDof(); ++scvIdx) {
const auto &scvLocalGeom = stencil.subControlVolume(scvIdx).localGeometry();
Dune::GeometryType geomType = scvLocalGeom.type();
static const unsigned quadratureOrder = 2;
const auto &rule
= Dune::QuadratureRules<Scalar, dim>::rule(geomType,
quadratureOrder);
// integrate f over the sub-control volume
for (auto it = rule.begin(); it != rule.end(); ++it) {
auto posScvLocal = it->position();
auto posElemLocal = scvLocalGeom.global(posScvLocal);
auto posGlobal = elemGeom.global(posScvLocal);
Scalar fval = f(posGlobal);
Scalar weight = it->weight();
Scalar detjac = scvLocalGeom.integrationElement(posScvLocal)
* elemGeom.integrationElement(posElemLocal);
result += fval * weight * detjac;
}
}
}
std::cout << "result: " << result
<< " (expected value: " << 1.0 / (1 << dim) << ")\n";
}
int main(int argc, char **argv)
{
// initialize MPI, finalize is done automatically on exit
Dune::MPIHelper::instance(argc, argv);
testIdenityMapping();
// test the quadrature in a tetrahedron. since the CLang compiler
// prior to version 3.2 generates incorrect code here, we do not
// do it if the compiler is clang 3.1 or older.
#if !__clang__ || __clang_major__ > 3 \
|| (__clang_major__ == 3 && __clang_minor__ >= 3)
testTetrahedron();
testCube();
#endif
testQuadrature();
return 0;
}