opm-simulators/examples/problems/richardslensproblem.hh
2020-06-08 16:41:02 +02:00

499 lines
17 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::RichardsLensProblem
*/
#ifndef EWOMS_RICHARDS_LENS_PROBLEM_HH
#define EWOMS_RICHARDS_LENS_PROBLEM_HH
#include <opm/models/richards/richardsmodel.hh>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/fluidsystems/LiquidPhase.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
template <class TypeTag>
class RichardsLensProblem;
} // namespace Opm
BEGIN_PROPERTIES
// Create new type tags
namespace TTag {
struct RichardsLensProblem { using InheritsFrom = std::tuple<Richards>; };
} // end namespace TTag
// Use 2d YaspGrid
template<class TypeTag>
struct Grid<TypeTag, TTag::RichardsLensProblem> { using type = Dune::YaspGrid<2>; };
// Set the physical problem to be solved
template<class TypeTag>
struct Problem<TypeTag, TTag::RichardsLensProblem> { using type = Opm::RichardsLensProblem<TypeTag>; };
// Set the wetting phase
template<class TypeTag>
struct WettingFluid<TypeTag, TTag::RichardsLensProblem>
{
private:
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::RichardsLensProblem>
{
private:
typedef GetPropType<TypeTag, Properties::FluidSystem> FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Enable gravitational acceleration
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::RichardsLensProblem> { static constexpr bool value = true; };
// Use central differences to approximate the Jacobian matrix
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::RichardsLensProblem> { static constexpr int value = 0; };
// Set the maximum number of newton iterations of a time step
template<class TypeTag>
struct NewtonMaxIterations<TypeTag, TTag::RichardsLensProblem> { static constexpr int value = 28; };
// Set the "desireable" number of newton iterations of a time step
template<class TypeTag>
struct NewtonTargetIterations<TypeTag, TTag::RichardsLensProblem> { static constexpr int value = 18; };
// Do not write the intermediate results of the newton method
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::RichardsLensProblem> { static constexpr bool value = false; };
// The default for the end time of the simulation
SET_SCALAR_PROP(RichardsLensProblem, EndTime, 3000);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(RichardsLensProblem, InitialTimeStepSize, 100);
// The default DGF file to load
SET_STRING_PROP(RichardsLensProblem, GridFile, "./data/richardslens_24x16.dgf");
END_PROPERTIES
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief A water infiltration problem with a low-permeability lens
* embedded into a high-permeability domain.
*
* The domain is rectangular. The left and right boundaries are
* free-flow boundaries with fixed water pressure which corresponds to
* a fixed saturation of \f$S_w = 0\f$ in the Richards model, the
* bottom boundary is closed. The top boundary is also closed except
* for an infiltration section, where water is infiltrating into an
* initially unsaturated porous medium. This problem is very similar
* the \c LensProblem, with the main difference being that the domain
* is initally fully saturated by gas instead of water and water
* instead of a \c DNAPL infiltrates from the top.
*/
template <class TypeTag>
class RichardsLensProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
typedef GetPropType<TypeTag, Properties::BaseProblem> ParentType;
typedef GetPropType<TypeTag, Properties::GridView> GridView;
typedef GetPropType<TypeTag, Properties::EqVector> EqVector;
typedef GetPropType<TypeTag, Properties::RateVector> RateVector;
typedef GetPropType<TypeTag, Properties::BoundaryRateVector> BoundaryRateVector;
typedef GetPropType<TypeTag, Properties::PrimaryVariables> PrimaryVariables;
typedef GetPropType<TypeTag, Properties::Stencil> Stencil;
typedef GetPropType<TypeTag, Properties::Simulator> Simulator;
typedef GetPropType<TypeTag, Properties::Model> Model;
typedef GetPropType<TypeTag, Properties::FluidSystem> FluidSystem;
typedef GetPropType<TypeTag, Properties::Scalar> Scalar;
typedef GetPropType<TypeTag, Properties::Indices> Indices;
enum {
// copy some indices for convenience
pressureWIdx = Indices::pressureWIdx,
contiEqIdx = Indices::contiEqIdx,
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dimWorld = GridView::dimensionworld
};
// get the material law from the property system
typedef GetPropType<TypeTag, Properties::MaterialLaw> MaterialLaw;
//! The parameters of the material law to be used
typedef typename MaterialLaw::Params MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
RichardsLensProblem(Simulator& simulator)
: ParentType(simulator)
, pnRef_(1e5)
{
dofIsInLens_.resize(simulator.model().numGridDof());
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
pnRef_ = 1e5;
lensLowerLeft_[0] = 1.0;
lensLowerLeft_[1] = 2.0;
lensUpperRight_[0] = 4.0;
lensUpperRight_[1] = 3.0;
// parameters for the Van Genuchten law
// alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
lensMaterialParams_.finalize();
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
outerMaterialParams_.finalize();
// parameters for the linear law
// minimum and maximum pressures
// lensMaterialParams_.setEntryPC(0);
// outerMaterialParams_.setEntryPC(0);
// lensMaterialParams_.setMaxPC(0);
// outerMaterialParams_.setMaxPC(0);
lensK_ = this->toDimMatrix_(1e-12);
outerK_ = this->toDimMatrix_(5e-12);
// determine which degrees of freedom are in the lens
Stencil stencil(this->gridView(), this->simulator().model().dofMapper() );
auto elemIt = this->gridView().template begin</*codim=*/0>();
auto elemEndIt = this->gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
stencil.update(*elemIt);
for (unsigned dofIdx = 0; dofIdx < stencil.numPrimaryDof(); ++ dofIdx) {
unsigned globalDofIdx = stencil.globalSpaceIndex(dofIdx);
const auto& dofPos = stencil.subControlVolume(dofIdx).center();
dofIsInLens_[globalDofIdx] = isInLens_(dofPos);
}
}
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "lens_richards_"
<< Model::discretizationName();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return temperature(context.globalSpaceIndex(spaceIdx, timeIdx), timeIdx); }
Scalar temperature(unsigned globalSpaceIdx OPM_UNUSED, unsigned timeIdx OPM_UNUSED) const
{ return 273.15 + 10; } // -> 10°C
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isInLens_(pos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return materialLawParams(globalSpaceIdx, timeIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalSpaceIdx,
unsigned timeIdx OPM_UNUSED) const
{
if (dofIsInLens_[globalSpaceIdx])
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \brief Return the reference pressure [Pa] of the wetting phase.
*
* \copydetails Doxygen::contextParams
*/
template <class Context>
Scalar referencePressure(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{ return referencePressure(context.globalSpaceIndex(spaceIdx, timeIdx), timeIdx); }
// the Richards model does not have an element context available at all places
// where the reference pressure is required...
Scalar referencePressure(unsigned globalSpaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return pnRef_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 0.0;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fs);
fs.setPressure(wettingPhaseIdx, pnRef_ + pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
fs.setPressure(nonWettingPhaseIdx, pnRef_);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
fs.setDensity(wettingPhaseIdx, FluidSystem::density(fs, paramCache, wettingPhaseIdx));
//fs.setDensity(nonWettingPhaseIdx, FluidSystem::density(fs, paramCache, nonWettingPhaseIdx));
fs.setViscosity(wettingPhaseIdx, FluidSystem::viscosity(fs, paramCache, wettingPhaseIdx));
//fs.setViscosity(nonWettingPhaseIdx, FluidSystem::viscosity(fs, paramCache, nonWettingPhaseIdx));
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
// inflow of water
massRate[contiEqIdx] = -0.04; // kg / (m * s)
values.setMassRate(massRate);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 0.0;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fs);
values[pressureWIdx] = pnRef_ + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
bool isInLens_(const GlobalPosition& pos) const
{
for (unsigned i = 0; i < dimWorld; ++i) {
if (pos[i] < lensLowerLeft_[i] || pos[i] > lensUpperRight_[i])
return false;
}
return true;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
std::vector<bool> dofIsInLens_;
Scalar eps_;
Scalar pnRef_;
};
} // namespace Opm
#endif