mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
1031 lines
34 KiB
C++
1031 lines
34 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <opm/polymer/TransportModelPolymer.hpp>
|
|
#include <opm/core/fluid/IncompPropertiesInterface.hpp>
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/utility/RootFinders.hpp>
|
|
#include <cmath>
|
|
|
|
|
|
class Opm::TransportModelPolymer::ResidualEquation
|
|
{
|
|
public:
|
|
int cell;
|
|
double s0;
|
|
double c0;
|
|
double cmax0;
|
|
double influx; // sum_j min(v_ij, 0)*f(s_j)
|
|
double influx_polymer; // sum_j min(v_ij, 0)*f(s_j)*mc(c_j)
|
|
double outflux; // sum_j max(v_ij, 0)
|
|
double porosity;
|
|
double dtpv; // dt/pv(i)
|
|
double dps;
|
|
double res_factor;
|
|
double c_max_ads;
|
|
double rhor;
|
|
double ads0;
|
|
GradientMethod gradient_method;
|
|
const TransportModelPolymer& tm;
|
|
|
|
ResidualEquation(const TransportModelPolymer& tmodel, int cell_index);
|
|
void computeResidual(const double* x, double* res) const;
|
|
void computeResidual(const double* x, double* res, double& mc, double& ff) const;
|
|
double computeResidualS(const double* x) const;
|
|
double computeResidualC(const double* x) const;
|
|
void computeGradientResS(const double* x, double* res, double* gradient) const;
|
|
void computeGradientResC(const double* x, double* res, double* gradient) const;
|
|
void computeJacobiRes(const double* x, double* dres_s_dsdc, double* dres_c_dsdc) const;
|
|
|
|
private:
|
|
void computeResAndJacobi(const double* x, const bool if_res_s, const bool if_res_c,
|
|
const bool if_dres_s_dsdc, const bool if_dres_c_dsdc,
|
|
double* res, double* dres_s_dsdc,
|
|
double* dres_c_dsdc, double& mc, double& ff) const;
|
|
};
|
|
|
|
|
|
namespace
|
|
{
|
|
bool check_interval(double* x, const double* xmin, const double* xmax);
|
|
|
|
double norm(double* res)
|
|
{
|
|
return std::max(std::abs(res[0]), std::abs(res[1]));
|
|
}
|
|
|
|
bool solveNewtonStep(const double* , const Opm::TransportModelPolymer::ResidualEquation&,
|
|
const double*, double*);
|
|
|
|
|
|
// Define a piecewise linear curve along which we will look for zero of the "s" or "r" residual.
|
|
// The curve starts at "x", goes along the direction "direction" until it hits the boundary of the box of
|
|
// admissible values for "s" and "x" (which is given by "[x_min[0], x_max[0]]x[x_min[1], x_max[1]]").
|
|
// Then it joins in a straight line the point "end_point".
|
|
class CurveInSCPlane{
|
|
public:
|
|
CurveInSCPlane();
|
|
void setup(const double* x, const double* direction,
|
|
const double* end_point, const double* x_min,
|
|
const double* x_max, double& t_max_out,
|
|
double& t_out_out);
|
|
void computeXOfT(double*, const double) const;
|
|
|
|
private:
|
|
double direction_[2];
|
|
double end_point_[2];
|
|
double x_max_[2];
|
|
double x_min_[2];
|
|
double t_out_;
|
|
double t_max_; // t_max = t_out + 1
|
|
double x_out_[2];
|
|
double x_[2];
|
|
};
|
|
|
|
|
|
// Compute the "s" residual along the curve "curve" for a given residual equation "res_eq".
|
|
// The operator() is sent to a root solver.
|
|
class ResSOnCurve
|
|
{
|
|
public:
|
|
ResSOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq);
|
|
double operator()(const double t) const;
|
|
CurveInSCPlane curve;
|
|
private:
|
|
Opm::TransportModelPolymer::ResidualEquation res_eq_;
|
|
};
|
|
|
|
// Compute the "c" residual along the curve "curve" for a given residual equation "res_eq".
|
|
// The operator() is sent to a root solver.
|
|
class ResCOnCurve
|
|
{
|
|
public:
|
|
ResCOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq);
|
|
double operator()(const double t) const;
|
|
CurveInSCPlane curve;
|
|
private:
|
|
Opm::TransportModelPolymer::ResidualEquation res_eq_;
|
|
};
|
|
|
|
}
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
TransportModelPolymer::TransportModelPolymer(const UnstructuredGrid& grid,
|
|
const double* porosity,
|
|
const double* porevolume,
|
|
const IncompPropertiesInterface& props,
|
|
const PolymerProperties& polyprops,
|
|
const SingleCellMethod method,
|
|
const double tol,
|
|
const int maxit)
|
|
: grid_(grid),
|
|
porosity_(porosity),
|
|
porevolume_(porevolume),
|
|
props_(props),
|
|
polyprops_(polyprops),
|
|
tol_(tol),
|
|
maxit_(maxit),
|
|
darcyflux_(0),
|
|
source_(0),
|
|
dt_(0.0),
|
|
inflow_c_(0.0),
|
|
saturation_(0),
|
|
concentration_(0),
|
|
cmax_(0),
|
|
fractionalflow_(grid.number_of_cells, -1.0),
|
|
mc_(grid.number_of_cells, -1.0),
|
|
method_(method)
|
|
{
|
|
if (props.numPhases() != 2) {
|
|
THROW("Property object must have 2 phases");
|
|
}
|
|
visc_ = props.viscosity();
|
|
|
|
// Set up smin_ and smax_
|
|
int num_cells = props.numCells();
|
|
smin_.resize(props.numPhases()*num_cells);
|
|
smax_.resize(props.numPhases()*num_cells);
|
|
std::vector<int> cells(num_cells);
|
|
for (int i = 0; i < num_cells; ++i) {
|
|
cells[i] = i;
|
|
}
|
|
props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]);
|
|
}
|
|
|
|
|
|
|
|
|
|
void TransportModelPolymer::solve(const double* darcyflux,
|
|
const double* source,
|
|
const double dt,
|
|
const double inflow_c,
|
|
double* saturation,
|
|
double* concentration,
|
|
double* cmax)
|
|
{
|
|
darcyflux_ = darcyflux;
|
|
source_ = source;
|
|
dt_ = dt;
|
|
inflow_c_ = inflow_c;
|
|
saturation_ = saturation;
|
|
concentration_ = concentration;
|
|
cmax_ = cmax;
|
|
reorderAndTransport(grid_, darcyflux);
|
|
}
|
|
|
|
|
|
|
|
|
|
// Residual for saturation equation, single-cell implicit Euler transport
|
|
//
|
|
// r(s) = s - s0 + dt/pv*( influx + outflux*f(s) )
|
|
//
|
|
// where influx is water influx, outflux is total outflux.
|
|
// Influxes are negative, outfluxes positive.
|
|
struct TransportModelPolymer::ResidualS
|
|
{
|
|
const TransportModelPolymer& tm_;
|
|
const int cell_;
|
|
const double s0_;
|
|
const double cmax0_;
|
|
const double influx_; // sum_j min(v_ij, 0)*f(s_j)
|
|
const double outflux_; // sum_j max(v_ij, 0)
|
|
const double comp_term_; // q - sum_j v_ij
|
|
const double dtpv_; // dt/pv(i)
|
|
const double c_;
|
|
explicit ResidualS(const TransportModelPolymer& tmodel,
|
|
const int cell,
|
|
const double s0,
|
|
const double cmax0,
|
|
const double influx,
|
|
const double outflux,
|
|
const double comp_term,
|
|
const double dtpv,
|
|
const double c)
|
|
: tm_(tmodel),
|
|
cell_(cell),
|
|
s0_(s0),
|
|
cmax0_(cmax0),
|
|
influx_(influx),
|
|
outflux_(outflux),
|
|
comp_term_(comp_term),
|
|
dtpv_(dtpv),
|
|
c_(c)
|
|
{
|
|
}
|
|
double operator()(double s) const
|
|
{
|
|
double ff;
|
|
tm_.fracFlow(s, c_, cmax0_, cell_, ff);
|
|
return s - s0_ + dtpv_*(outflux_*ff + influx_ + s*comp_term_);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
// Residual for concentration equation, single-cell implicit Euler transport
|
|
//
|
|
// \TODO doc me
|
|
// where ...
|
|
// Influxes are negative, outfluxes positive.
|
|
struct TransportModelPolymer::ResidualC
|
|
{
|
|
int cell;
|
|
double s0;
|
|
double c0;
|
|
double cmax0;
|
|
double influx; // sum_j min(v_ij, 0)*f(s_j)
|
|
double influx_polymer; // sum_j min(v_ij, 0)*f(s_j)*mc(c_j)
|
|
double outflux; // sum_j max(v_ij, 0)
|
|
double comp_term; // q - sum_j v_ij
|
|
double porosity;
|
|
double dtpv; // dt/pv(i)
|
|
mutable double s; // Mutable in order to change it with every operator() call to be the last computed s value.
|
|
const TransportModelPolymer& tm;
|
|
explicit ResidualC(const TransportModelPolymer& tmodel, int cell_index)
|
|
: tm(tmodel)
|
|
{
|
|
cell = cell_index;
|
|
s0 = tm.saturation_[cell];
|
|
c0 = tm.concentration_[cell];
|
|
cmax0 = tm.cmax_[cell];
|
|
double dflux = -tm.source_[cell];
|
|
bool src_is_inflow = dflux < 0.0;
|
|
influx = src_is_inflow ? dflux : 0.0;
|
|
double mc;
|
|
tm.computeMc(tm.inflow_c_, mc);
|
|
influx_polymer = src_is_inflow ? dflux*mc : 0.0;
|
|
outflux = !src_is_inflow ? dflux : 0.0;
|
|
comp_term = tm.source_[cell]; // Note: this assumes that all source flux is water.
|
|
dtpv = tm.dt_/tm.porevolume_[cell];
|
|
porosity = tm.porosity_[cell];
|
|
s = -1e100;
|
|
|
|
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
|
int f = tm.grid_.cell_faces[i];
|
|
double flux;
|
|
int other;
|
|
// Compute cell flux
|
|
if (cell == tm.grid_.face_cells[2*f]) {
|
|
flux = tm.darcyflux_[f];
|
|
other = tm.grid_.face_cells[2*f+1];
|
|
} else {
|
|
flux =-tm.darcyflux_[f];
|
|
other = tm.grid_.face_cells[2*f];
|
|
}
|
|
// Add flux to influx or outflux, if interior.
|
|
if (other != -1) {
|
|
if (flux < 0.0) {
|
|
influx += flux*tm.fractionalflow_[other];
|
|
influx_polymer += flux*tm.fractionalflow_[other]*tm.mc_[other];
|
|
} else {
|
|
outflux += flux;
|
|
}
|
|
comp_term -= flux;
|
|
}
|
|
}
|
|
}
|
|
|
|
void computeBothResiduals(const double s_arg, const double c_arg, double& res_s, double& res_c, double& mc, double& ff) const
|
|
{
|
|
double dps = tm.polyprops_.deadPoreVol();
|
|
tm.fracFlow(s_arg, c_arg, cmax0, cell, ff);
|
|
tm.computeMc(c_arg, mc);
|
|
double rhor = tm.polyprops_.rockDensity();
|
|
double c_ads0;
|
|
tm.polyprops_.adsorption(c0, cmax0, c_ads0);
|
|
double c_ads;
|
|
tm.polyprops_.adsorption(c_arg, cmax0, c_ads);
|
|
res_s = s_arg - s0 + dtpv*(outflux*ff + influx + s*comp_term);
|
|
res_c = s_arg*(1 - dps)*c_arg - (s0 - dps)*c0
|
|
+ rhor*((1.0 - porosity)/porosity)*(c_ads - c_ads0)
|
|
+ dtpv*(outflux*ff*mc + influx_polymer)
|
|
+ dtpv*(s_arg*c_arg*(1.0 - dps) - rhor*c_ads)*comp_term;
|
|
|
|
}
|
|
|
|
double operator()(double c) const
|
|
{
|
|
double dps = tm.polyprops_.deadPoreVol();
|
|
ResidualS res_s(tm, cell, s0, cmax0, influx, outflux, comp_term, dtpv, c);
|
|
int iters_used;
|
|
// Solve for s first.
|
|
// s = modifiedRegulaFalsi(res_s, std::max(tm.smin_[2*cell], dps), tm.smax_[2*cell],
|
|
// tm.maxit_, tm.tol_, iters_used);
|
|
s = modifiedRegulaFalsi(res_s, s0, 0.0, 1.0,
|
|
tm.maxit_, tm.tol_, iters_used);
|
|
double ff;
|
|
tm.fracFlow(s, c, cmax0, cell, ff);
|
|
double mc;
|
|
tm.computeMc(c, mc);
|
|
double rhor = tm.polyprops_.rockDensity();
|
|
double c_ads0;
|
|
tm.polyprops_.adsorption(c0, cmax0, c_ads0);
|
|
double c_ads;
|
|
tm.polyprops_.adsorption(c, cmax0, c_ads);
|
|
double res = (1 - dps)*s*c - (1 - dps)*s0*c0
|
|
+ rhor*((1.0 - porosity)/porosity)*(c_ads - c_ads0)
|
|
+ dtpv*(outflux*ff*mc + influx_polymer)
|
|
+ dtpv*(s*c*(1.0 - dps) - rhor*c_ads)*comp_term;
|
|
#ifdef EXTRA_DEBUG_OUTPUT
|
|
std::cout << "c = " << c << " s = " << s << " c-residual = " << res << std::endl;
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
double lastSaturation() const
|
|
{
|
|
return s;
|
|
}
|
|
};
|
|
|
|
|
|
// ResidualEquation gathers parameters to construct the residual, computes its
|
|
// value and the values of its derivatives.
|
|
|
|
TransportModelPolymer::ResidualEquation::ResidualEquation(const TransportModelPolymer& tmodel, int cell_index)
|
|
: tm(tmodel)
|
|
{
|
|
gradient_method = Analytic;
|
|
cell = cell_index;
|
|
s0 = tm.saturation_[cell];
|
|
c0 = tm.concentration_[cell];
|
|
cmax0 = tm.cmax_[cell];
|
|
dps = tm.polyprops_.deadPoreVol();
|
|
rhor = tm.polyprops_.rockDensity();
|
|
tm.polyprops_.adsorption(c0, cmax0, ads0);
|
|
res_factor = tm.polyprops_.resFactor();
|
|
c_max_ads = tm.polyprops_.cMaxAds();
|
|
double dflux = -tm.source_[cell];
|
|
bool src_is_inflow = dflux < 0.0;
|
|
influx = src_is_inflow ? dflux : 0.0;
|
|
double mc;
|
|
tm.computeMc(tm.inflow_c_, mc);
|
|
influx_polymer = src_is_inflow ? dflux*mc : 0.0;
|
|
outflux = !src_is_inflow ? dflux : 0.0;
|
|
dtpv = tm.dt_/tm.porevolume_[cell];
|
|
porosity = tm.porosity_[cell];
|
|
for (int i = tm.grid_.cell_facepos[cell]; i < tm.grid_.cell_facepos[cell+1]; ++i) {
|
|
int f = tm.grid_.cell_faces[i];
|
|
double flux;
|
|
int other;
|
|
// Compute cell flux
|
|
if (cell == tm.grid_.face_cells[2*f]) {
|
|
flux = tm.darcyflux_[f];
|
|
other = tm.grid_.face_cells[2*f+1];
|
|
} else {
|
|
flux =-tm.darcyflux_[f];
|
|
other = tm.grid_.face_cells[2*f];
|
|
}
|
|
// Add flux to influx or outflux, if interior.
|
|
if (other != -1) {
|
|
if (flux < 0.0) {
|
|
influx += flux*tm.fractionalflow_[other];
|
|
influx_polymer += flux*tm.fractionalflow_[other]*tm.mc_[other];
|
|
} else {
|
|
outflux += flux;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void TransportModelPolymer::ResidualEquation::computeResidual(const double* x, double* res) const
|
|
{
|
|
double dummy;
|
|
computeResAndJacobi(x, true, true, false, false, res, 0, 0, dummy, dummy);
|
|
}
|
|
|
|
void TransportModelPolymer::ResidualEquation::computeResidual(const double* x, double* res, double& mc, double& ff) const
|
|
{
|
|
computeResAndJacobi(x, true, true, false, false, res, 0, 0, mc, ff);
|
|
}
|
|
|
|
|
|
double TransportModelPolymer::ResidualEquation::computeResidualS(const double* x) const
|
|
{
|
|
double res[2];
|
|
double dummy;
|
|
computeResAndJacobi(x, true, false, false, false, res, 0, 0, dummy, dummy);
|
|
return res[0];
|
|
}
|
|
|
|
double TransportModelPolymer::ResidualEquation::computeResidualC(const double* x) const
|
|
{
|
|
double res[2];
|
|
double dummy;
|
|
computeResAndJacobi(x, false, true, false, false, res, 0, 0, dummy, dummy);
|
|
return res[1];
|
|
}
|
|
|
|
void TransportModelPolymer::ResidualEquation::computeGradientResS(const double* x, double* res, double* gradient) const
|
|
// If gradient_method == FinDif, use finite difference
|
|
// If gradient_method == Analytic, use analytic expresions
|
|
{
|
|
double dummy;
|
|
computeResAndJacobi(x, true, true, true, false, res, gradient, 0, dummy, dummy);
|
|
}
|
|
|
|
void TransportModelPolymer::ResidualEquation::computeGradientResC(const double* x, double* res, double* gradient) const
|
|
// If gradient_method == FinDif, use finite difference
|
|
// If gradient_method == Analytic, use analytic expresions
|
|
{
|
|
double dummy;
|
|
computeResAndJacobi(x, true, true, false, true, res, 0, gradient, dummy, dummy);
|
|
}
|
|
|
|
// Compute the Jacobian of the residual equations.
|
|
void TransportModelPolymer::ResidualEquation::computeJacobiRes(const double* x, double* dres_s_dsdc, double* dres_c_dsdc) const
|
|
{
|
|
double dummy;
|
|
computeResAndJacobi(x, false, false, true, true, 0, dres_s_dsdc, dres_c_dsdc, dummy, dummy);
|
|
}
|
|
|
|
void TransportModelPolymer::ResidualEquation::computeResAndJacobi(const double* x, const bool if_res_s, const bool if_res_c,
|
|
const bool if_dres_s_dsdc, const bool if_dres_c_dsdc,
|
|
double* res, double* dres_s_dsdc,
|
|
double* dres_c_dsdc, double& mc, double& ff) const
|
|
{
|
|
if ((if_dres_s_dsdc || if_dres_c_dsdc) && gradient_method == Analytic) {
|
|
double s = x[0];
|
|
double c = x[1];
|
|
std::vector<double> dff_dsdc(2);
|
|
double mc_dc;
|
|
double ads_dc;
|
|
double ads;
|
|
tm.fracFlowWithDer(s, c, cmax0, cell, ff, dff_dsdc);
|
|
if (if_dres_c_dsdc) {
|
|
tm.polyprops_.adsorptionWithDer(c, cmax0, ads, ads_dc);
|
|
tm.computeMcWithDer(c, mc, mc_dc);
|
|
} else {
|
|
tm.polyprops_.adsorption(c, cmax0, ads);
|
|
tm.computeMc(c, mc);
|
|
}
|
|
if (if_res_s) {
|
|
res[0] = s - s0 + dtpv*(outflux*ff + influx);
|
|
}
|
|
if (if_res_c) {
|
|
res[1] = (1 - dps)*s*c - (1 - dps)*s0*c0
|
|
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
|
|
+ dtpv*(outflux*ff*mc + influx_polymer);
|
|
}
|
|
if (if_dres_s_dsdc) {
|
|
dres_s_dsdc[0] = 1 + dtpv*outflux*dff_dsdc[0];
|
|
dres_s_dsdc[1] = dtpv*outflux*dff_dsdc[1];
|
|
}
|
|
if (if_dres_c_dsdc) {
|
|
dres_c_dsdc[0] = (1 - dps)*c + dtpv*outflux*(dff_dsdc[0])*mc;
|
|
dres_c_dsdc[1] = (1 - dps)*s + rhor*((1.0 - porosity)/porosity)*ads_dc
|
|
+ dtpv*outflux*(dff_dsdc[1]*mc + ff*mc_dc);
|
|
}
|
|
|
|
} else if (if_res_c || if_res_s) {
|
|
double s = x[0];
|
|
double c = x[1];
|
|
tm.fracFlow(s, c, cmax0, cell, ff);
|
|
tm.computeMc(c, mc);
|
|
double ads;
|
|
tm.polyprops_.adsorption(c, cmax0, ads);
|
|
if (if_res_s) {
|
|
res[0] = s - s0 + dtpv*(outflux*ff + influx);
|
|
}
|
|
if (if_res_c) {
|
|
res[1] = (1 - dps)*s*c - (1 - dps)*s0*c0
|
|
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
|
|
+ dtpv*(outflux*ff*mc + influx_polymer);
|
|
}
|
|
}
|
|
|
|
if ((if_dres_c_dsdc || if_dres_s_dsdc) && gradient_method == FinDif) {
|
|
double epsi = 1e-8;
|
|
double res_epsi[2];
|
|
double x_epsi[2];
|
|
computeResidual(x, res);
|
|
if (if_dres_s_dsdc) {
|
|
x_epsi[0] = x[0] + epsi;
|
|
x_epsi[1] = x[1];
|
|
computeResidual(x_epsi, res_epsi);
|
|
dres_s_dsdc[0] = (res_epsi[0] - res[0])/epsi;
|
|
x_epsi[0] = x[0];
|
|
x_epsi[1] = x[1] + epsi;
|
|
computeResidual(x_epsi, res_epsi);
|
|
dres_s_dsdc[1] = (res_epsi[0] - res[0])/epsi;
|
|
}
|
|
if (if_dres_c_dsdc) {
|
|
x_epsi[0] = x[0] + epsi;
|
|
x_epsi[1] = x[1];
|
|
computeResidual(x_epsi, res_epsi);
|
|
dres_c_dsdc[0] = (res_epsi[1] - res[1])/epsi;
|
|
x_epsi[0] = x[0];
|
|
x_epsi[1] = x[1] + epsi;
|
|
computeResidual(x_epsi, res_epsi);
|
|
dres_c_dsdc[1] = (res_epsi[1] - res[1])/epsi;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransportModelPolymer::solveSingleCell(const int cell)
|
|
{
|
|
switch (method_) {
|
|
case Bracketing:
|
|
solveSingleCellBracketing(cell);
|
|
break;
|
|
case Newton:
|
|
solveSingleCellNewton(cell);
|
|
break;
|
|
default:
|
|
THROW("Unknown method " << method_);
|
|
}
|
|
}
|
|
|
|
|
|
void TransportModelPolymer::solveSingleCellBracketing(int cell)
|
|
{
|
|
ResidualC res(*this, cell);
|
|
const double a = 0.0;
|
|
const double b = polyprops_.cMax()*1.1; // Add 10% to account for possible non-monotonicity of hyperbolic system.
|
|
int iters_used;
|
|
|
|
// Check if current state is an acceptable solution.
|
|
double res_sc[2];
|
|
double mc, ff;
|
|
res.computeBothResiduals(saturation_[cell], concentration_[cell], res_sc[0], res_sc[1], mc, ff);
|
|
if (norm(res_sc) < tol_) {
|
|
fractionalflow_[cell] = ff;
|
|
mc_[cell] = mc;
|
|
return;
|
|
}
|
|
|
|
concentration_[cell] = modifiedRegulaFalsi(res, a, b, maxit_, tol_, iters_used);
|
|
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
|
|
saturation_[cell] = res.lastSaturation();
|
|
fracFlow(saturation_[cell], concentration_[cell], cmax_[cell], cell,
|
|
fractionalflow_[cell]);
|
|
computeMc(concentration_[cell], mc_[cell]);
|
|
}
|
|
|
|
|
|
|
|
// Newton method, where we first try a Newton step. Then, if it does not work well, we look for
|
|
// the zero of either the residual in s or the residual in c along a specified piecewise linear
|
|
// curve. In these cases, we can use a robust 1d solver.
|
|
void TransportModelPolymer::solveSingleCellNewton(int cell)
|
|
{
|
|
// the tolerance for 1d solver is set as a function of the residual, because if we are far
|
|
// from the solution we do not need a very accurate 1d solver (recall that the 1d solver
|
|
// solves for only one of the two residuals)
|
|
// The tolerance falsi_tol is improved by
|
|
// (reduc_factor_falsi_tol * "previous residual") at each step
|
|
double falsi_tol;
|
|
const double reduc_factor_falsi_tol = 1e-2;
|
|
int iters_used_falsi = 0;
|
|
const int max_iters_split = maxit_;
|
|
int iters_used_split = 0;
|
|
|
|
// Check if current state is an acceptable solution.
|
|
ResidualEquation res_eq(*this, cell);
|
|
double x[2] = {saturation_[cell], concentration_[cell]};
|
|
double res[2];
|
|
double mc;
|
|
double ff;
|
|
res_eq.computeResidual(x, res, mc, ff);
|
|
if (norm(res) <= tol_) {
|
|
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
|
|
fractionalflow_[cell] = ff;
|
|
mc_[cell] = mc;
|
|
return;
|
|
}
|
|
|
|
falsi_tol = std::max(reduc_factor_falsi_tol*norm(res), tol_);
|
|
double x_min[2] = { std::max(polyprops_.deadPoreVol(), smin_[2*cell]), 0.0 };
|
|
double x_max[2] = { 1.0, polyprops_.cMax() };
|
|
double t;
|
|
double t_max;
|
|
double t_out;
|
|
double direction[2];
|
|
double end_point[2];
|
|
double gradient[2];
|
|
bool unsuccessfull_newton_step = true;
|
|
double x_new[2];
|
|
double res_new[2];
|
|
ResSOnCurve res_s_on_curve(res_eq);
|
|
ResCOnCurve res_c_on_curve(res_eq);
|
|
bool if_res_s;
|
|
int counter_drop_newton = 0;
|
|
bool not_so_successfull_newton_step = false;
|
|
|
|
|
|
while ((norm(res) > tol_) && (iters_used_split < max_iters_split)) {
|
|
// We first try a Newton step
|
|
if (counter_drop_newton == 0 && solveNewtonStep(x, res_eq, res, x_new)) {
|
|
res_eq.computeResidual(x_new, res_new, mc, ff);
|
|
unsuccessfull_newton_step = false;
|
|
not_so_successfull_newton_step = false;
|
|
if (norm(res_new) > norm(res) || x_new[0] < x_min[0] || x_new[1] < x_min[1] || x_new[0] > x_max[0] || x_new[1] > x_max[1]) {
|
|
unsuccessfull_newton_step = true;
|
|
} else {
|
|
x[0] = x_new[0];
|
|
x[1] = x_new[1];
|
|
if (norm(res_new) > 1e-1*norm(res) && norm(res_new) < 1e1*tol_) {
|
|
// We are close to the solution and Newton does not perform well.
|
|
// Then, we drop Newton for a given number of iterations.
|
|
not_so_successfull_newton_step = true;
|
|
counter_drop_newton = 4;
|
|
}
|
|
res[0] = res_new[0];
|
|
res[1] = res_new[1];
|
|
if (check_interval(x, x_min, x_max)) {
|
|
res_eq.computeResidual(x, res, mc, ff);
|
|
}
|
|
iters_used_split += 1;
|
|
}
|
|
} else {
|
|
unsuccessfull_newton_step = true;
|
|
}
|
|
|
|
if (not_so_successfull_newton_step || unsuccessfull_newton_step) {
|
|
// Newton was not satisfactory. We start 1d solvers.
|
|
if (not_so_successfull_newton_step) {
|
|
counter_drop_newton -= 1;
|
|
}
|
|
// General comment on the zero curves of the s and c residuals:
|
|
// Typically res_s(s,c)=0 defines an increasing curve in the s-c plane while
|
|
// res_c(s,c)=0 defines a decreasing curve. However, we do not assume that in the algorithm.
|
|
// We know that res_s(x_top_left)<0, res_s(x_bottom_right)>0
|
|
// and res_c(x_bottom_left)<0, res_c(x_top_right)>0
|
|
// Here, "top", "bottom", ... refer to the corner of the admissible box of (s,c) values.
|
|
// We use these results to construct a 1d curve for which we are sure that res_s or res_c change sign
|
|
// and which can therefore be used by a 1d solver.
|
|
|
|
// We start with the zero curve of the s and r residual we are closest to.
|
|
if (std::abs(res[0]) < std::abs(res[1])) {
|
|
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[0]), tol_);
|
|
if (res[0] < -falsi_tol) {
|
|
direction[0] = x_max[0] - x[0];
|
|
direction[1] = x_min[1] - x[1];
|
|
if_res_s = true;
|
|
} else if (res[0] > falsi_tol) {
|
|
direction[0] = x_min[0] - x[0];
|
|
direction[1] = x_max[1] - x[1];
|
|
if_res_s = true;
|
|
} else {
|
|
res_eq.computeGradientResS(x, res, gradient);
|
|
direction[0] = -gradient[1];
|
|
direction[1] = gradient[0];
|
|
if_res_s = false;
|
|
}
|
|
} else {
|
|
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[1]), tol_);
|
|
if (res[1] < -falsi_tol) {
|
|
direction[0] = x_max[0] - x[0];
|
|
direction[1] = x_max[1] - x[1];
|
|
if_res_s = false;
|
|
} else if (res[1] > falsi_tol) {
|
|
direction[0] = x_min[0] - x[0];
|
|
direction[1] = x_min[1] - x[1];
|
|
if_res_s = false;
|
|
} else {
|
|
res_eq.computeGradientResC(x, res, gradient);
|
|
direction[0] = -gradient[1];
|
|
direction[1] = gradient[0];
|
|
if_res_s = true;
|
|
}
|
|
}
|
|
if (if_res_s) {
|
|
if (res[0] < 0) {
|
|
end_point[0] = x_max[0];
|
|
end_point[1] = x_min[1];
|
|
res_s_on_curve.curve.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
|
|
if (res_s_on_curve(t_out) >= 0) {
|
|
t_max = t_out;
|
|
}
|
|
} else {
|
|
end_point[0] = x_min[0];
|
|
end_point[1] = x_max[1];
|
|
res_s_on_curve.curve.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
|
|
if (res_s_on_curve(t_out) <= 0) {
|
|
t_max = t_out;
|
|
}
|
|
}
|
|
// Note: In some experiments modifiedRegularFalsi does not yield a result under the given tolerance.
|
|
t = modifiedRegulaFalsi(res_s_on_curve, 0., t_max, maxit_, falsi_tol, iters_used_falsi);
|
|
res_s_on_curve.curve.computeXOfT(x, t);
|
|
} else {
|
|
if (res[1] < 0) {
|
|
end_point[0] = x_max[0];
|
|
end_point[1] = x_max[1];
|
|
res_c_on_curve.curve.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
|
|
if (res_c_on_curve(t_out) >= 0) {
|
|
t_max = t_out;
|
|
}
|
|
} else {
|
|
end_point[0] = x_min[0];
|
|
end_point[1] = x_min[1];
|
|
res_c_on_curve.curve.setup(x, direction, end_point, x_min, x_max, t_max, t_out);
|
|
if (res_c_on_curve(t_out) <= 0) {
|
|
t_max = t_out;
|
|
}
|
|
}
|
|
t = modifiedRegulaFalsi(res_c_on_curve, 0., t_max, maxit_, falsi_tol, iters_used_falsi);
|
|
res_c_on_curve.curve.computeXOfT(x, t);
|
|
|
|
}
|
|
check_interval(x, x_min, x_max);
|
|
res_eq.computeResidual(x, res, mc, ff);
|
|
iters_used_split += 1;
|
|
}
|
|
}
|
|
|
|
|
|
if ((iters_used_split >= max_iters_split) && (norm(res) > tol_)) {
|
|
MESSAGE("Newton for single cell did not work in cell number " << cell);
|
|
solveSingleCellBracketing(cell);
|
|
} else {
|
|
concentration_[cell] = x[1];
|
|
cmax_[cell] = std::max(cmax_[cell], concentration_[cell]);
|
|
saturation_[cell] = x[0];
|
|
fractionalflow_[cell] = ff;
|
|
mc_[cell] = mc;
|
|
}
|
|
}
|
|
|
|
void TransportModelPolymer::solveMultiCell(const int num_cells, const int* cells)
|
|
{
|
|
double max_s_change = 0.0;
|
|
double max_c_change = 0.0;
|
|
int num_iters = 0;
|
|
// Must store state variables before we start.
|
|
std::vector<double> s0(num_cells);
|
|
std::vector<double> c0(num_cells);
|
|
std::vector<double> cmax0(num_cells);
|
|
// Must set initial fractional flows etc. before we start.
|
|
for (int i = 0; i < num_cells; ++i) {
|
|
const int cell = cells[i];
|
|
fracFlow(saturation_[cell], concentration_[cell], cmax_[cell],
|
|
cell, fractionalflow_[cell]);
|
|
computeMc(concentration_[cell], mc_[cell]);
|
|
s0[i] = saturation_[cell];
|
|
c0[i] = concentration_[cell];
|
|
cmax0[i] = cmax_[i];
|
|
}
|
|
do {
|
|
// int max_s_change_cell = -1;
|
|
// int max_c_change_cell = -1;
|
|
max_s_change = 0.0;
|
|
max_c_change = 0.0;
|
|
for (int i = 0; i < num_cells; ++i) {
|
|
const int cell = cells[i];
|
|
const double old_s = saturation_[cell];
|
|
const double old_c = concentration_[cell];
|
|
saturation_[cell] = s0[i];
|
|
concentration_[cell] = c0[i];
|
|
cmax_[cell] = cmax0[i];
|
|
solveSingleCell(cell);
|
|
// std::cout << "cell = " << cell << " delta s = " << saturation_[cell] - old_s << std::endl;
|
|
// if (max_s_change < std::fabs(saturation_[cell] - old_s)) {
|
|
// max_s_change_cell = cell;
|
|
// }
|
|
// if (max_c_change < std::fabs(concentration_[cell] - old_c)) {
|
|
// max_c_change_cell = cell;
|
|
// }
|
|
max_s_change = std::max(max_s_change, std::fabs(saturation_[cell] - old_s));
|
|
max_c_change = std::max(max_c_change, std::fabs(concentration_[cell] - old_c));
|
|
}
|
|
// std::cout << "Iter = " << num_iters << " max_s_change = " << max_s_change
|
|
// << " in cell " << max_change_cell << std::endl;
|
|
} while (((max_s_change > tol_) || (max_c_change > tol_)) && ++num_iters < maxit_);
|
|
if (max_s_change > tol_) {
|
|
THROW("In solveMultiCell(), we did not converge after "
|
|
<< num_iters << " iterations. Delta s = " << max_s_change);
|
|
}
|
|
if (max_c_change > tol_) {
|
|
THROW("In solveMultiCell(), we did not converge after "
|
|
<< num_iters << " iterations. Delta c = " << max_c_change);
|
|
}
|
|
std::cout << "Solved " << num_cells << " cell multicell problem in "
|
|
<< num_iters << " iterations." << std::endl;
|
|
}
|
|
|
|
|
|
void TransportModelPolymer::fracFlow(double s, double c, double cmax,
|
|
int cell, double& ff) const
|
|
{
|
|
std::vector<double> dummy;
|
|
fracFlowBoth(s, c, cmax, cell, ff, dummy, false);
|
|
}
|
|
|
|
void TransportModelPolymer::fracFlowWithDer(double s, double c, double cmax,
|
|
int cell, double& ff,
|
|
std::vector<double>& dff_dsdc) const
|
|
{
|
|
fracFlowBoth(s, c, cmax, cell, ff, dff_dsdc, true);
|
|
}
|
|
|
|
void TransportModelPolymer::fracFlowBoth(double s, double c, double cmax, int cell,
|
|
double& ff, std::vector<double>& dff_dsdc,
|
|
bool if_with_der) const
|
|
{
|
|
double relperm[2];
|
|
double drelperm_ds[4];
|
|
double sat[2] = {s, 1 - s};
|
|
props_.relperm(1, sat, &cell, relperm, drelperm_ds);
|
|
std::vector<double> mob(2);
|
|
std::vector<double> dmob_ds(2);
|
|
std::vector<double> dmob_dc(2);
|
|
double dmobwat_dc;
|
|
polyprops_.effectiveMobilitiesBoth(c, cmax, visc_, relperm, drelperm_ds,
|
|
mob, dmob_ds, dmobwat_dc, if_with_der);
|
|
dmob_dc[0] = dmobwat_dc;
|
|
dmob_dc[1] = 0.;
|
|
ff = mob[0]/(mob[0] + mob[1]);
|
|
if (if_with_der) {
|
|
dff_dsdc[0] = (dmob_ds[0]*mob[1] - dmob_ds[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to s
|
|
dff_dsdc[1] = (dmob_dc[0]*mob[1] - dmob_dc[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1])); // derivative with respect to c
|
|
} else {
|
|
dff_dsdc.clear();
|
|
}
|
|
}
|
|
|
|
void TransportModelPolymer::computeMc(double c, double& mc) const
|
|
{
|
|
polyprops_.computeMc(c, mc);
|
|
}
|
|
|
|
void TransportModelPolymer::computeMcWithDer(double c, double& mc,
|
|
double &dmc_dc) const
|
|
{
|
|
polyprops_.computeMcWithDer(c, mc, dmc_dc);
|
|
}
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
namespace
|
|
{
|
|
bool check_interval(double* x, const double* xmin, const double* xmax) {
|
|
bool test = false;
|
|
if (x[0] < xmin[0]) {
|
|
test = true;
|
|
x[0] = xmin[0];
|
|
} else if (x[0] > xmax[0]) {
|
|
test = true;
|
|
x[0] = xmax[0];
|
|
}
|
|
if (x[1] < xmin[1]) {
|
|
test = true;
|
|
x[1] = xmin[1];
|
|
} else if (x[1] > xmax[1]) {
|
|
test = true;
|
|
x[1] = xmax[1];
|
|
}
|
|
return test;
|
|
}
|
|
|
|
|
|
CurveInSCPlane::CurveInSCPlane()
|
|
{
|
|
}
|
|
|
|
// Setup the curve (see comment above).
|
|
// The curve is parametrized by t in [0, t_max], t_out is equal to t when the curve hits the bounding
|
|
// rectangle. x_out=(s_out, c_out) denotes the values of s and c at that point.
|
|
void CurveInSCPlane::setup(const double* x, const double* direction,
|
|
const double* end_point, const double* x_min,
|
|
const double* x_max, double& t_max_out,
|
|
double& t_out_out)
|
|
{
|
|
x_[0] = x[0];
|
|
x_[1] = x[1];
|
|
x_max_[0] = x_max[0];
|
|
x_max_[1] = x_max[1];
|
|
x_min_[0] = x_min[0];
|
|
x_min_[1] = x_min[1];
|
|
direction_[0] = direction[0];
|
|
direction_[1] = direction[1];
|
|
end_point_[0] = end_point[0];
|
|
end_point_[1] = end_point[1];
|
|
if ((end_point_[0]-x_[0])*direction_[0] + (end_point_[1]-x_[1])*direction_[1] < 0) {
|
|
direction_[0] *= -1.0;
|
|
direction_[1] *= -1.0;
|
|
}
|
|
if ((std::abs(direction_[0]) + std::abs(direction_[0])) == 0) {
|
|
direction_[0] = end_point_[0]-x_[0];
|
|
direction_[1] = end_point_[1]-x_[1];
|
|
}
|
|
bool t0_exists = true;
|
|
double t0 = 0; // dummy default value (so that compiler does not complain).
|
|
if (direction_[0] > 0) {
|
|
t0 = (x_max_[0] - x_[0])/direction_[0];
|
|
} else if (direction_[0] < 0) {
|
|
t0 = (x_min_[0] - x_[0])/direction_[0];
|
|
} else {
|
|
t0_exists = false;
|
|
}
|
|
bool t1_exists = true;
|
|
double t1 = 0; // dummy default value.
|
|
if (direction_[1] > 0) {
|
|
t1 = (x_max_[1] - x_[1])/direction_[1];
|
|
} else if (direction[1] < 0) {
|
|
t1 = (x_min_[1] - x_[1])/direction_[1];
|
|
} else {
|
|
t1_exists = false;
|
|
}
|
|
if (t0_exists) {
|
|
if (t1_exists) {
|
|
t_out_ = std::min(t0, t1);
|
|
} else {
|
|
t_out_ = t0;
|
|
}
|
|
} else if (t1_exists) {
|
|
t_out_ = t1;
|
|
} else {
|
|
THROW("Direction illegal: is a zero vector.");
|
|
}
|
|
x_out_[0] = x_[0] + t_out_*direction_[0];
|
|
x_out_[1] = x_[1] + t_out_*direction_[1];
|
|
t_max_ = t_out_ + 1;
|
|
t_max_out = t_max_;
|
|
t_out_out = t_out_;
|
|
}
|
|
|
|
|
|
// Compute x=(s,c) for a given t (t is the parameter for the piecewise linear curve)
|
|
void CurveInSCPlane::computeXOfT(double* x_of_t, const double t) const {
|
|
if (t <= t_out_) {
|
|
x_of_t[0] = x_[0] + t*direction_[0];
|
|
x_of_t[1] = x_[1] + t*direction_[1];
|
|
} else {
|
|
x_of_t[0] = 1/(t_max_-t_out_)*((t_max_ - t)*x_out_[0] + end_point_[0]*(t - t_out_));
|
|
x_of_t[1] = 1/(t_max_-t_out_)*((t_max_ - t)*x_out_[1] + end_point_[1]*(t - t_out_));
|
|
}
|
|
}
|
|
|
|
|
|
ResSOnCurve::ResSOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq)
|
|
: res_eq_(res_eq)
|
|
{
|
|
}
|
|
|
|
double ResSOnCurve::operator()(const double t) const
|
|
{
|
|
double x_of_t[2];
|
|
curve.computeXOfT(x_of_t, t);
|
|
return res_eq_.computeResidualS(x_of_t);
|
|
}
|
|
|
|
ResCOnCurve::ResCOnCurve(const Opm::TransportModelPolymer::ResidualEquation& res_eq)
|
|
: res_eq_(res_eq)
|
|
{
|
|
}
|
|
|
|
double ResCOnCurve::operator()(const double t) const
|
|
{
|
|
double x_of_t[2];
|
|
curve.computeXOfT(x_of_t, t);
|
|
return res_eq_.computeResidualC(x_of_t);
|
|
}
|
|
|
|
bool solveNewtonStep(const double* x, const Opm::TransportModelPolymer::ResidualEquation& res_eq,
|
|
const double* res, double* x_new) {
|
|
|
|
double dres_s_dsdc[2];
|
|
double dres_c_dsdc[2];
|
|
|
|
res_eq.computeJacobiRes(x, dres_s_dsdc, dres_c_dsdc);
|
|
|
|
double det = dres_s_dsdc[0]*dres_c_dsdc[1] - dres_c_dsdc[0]*dres_s_dsdc[1];
|
|
if (std::abs(det) < 1e-8) {
|
|
return false;
|
|
} else {
|
|
x_new[0] = x[0] - (res[0]*dres_c_dsdc[1] - res[1]*dres_s_dsdc[1])/det;
|
|
x_new[1] = x[1] - (res[1]*dres_s_dsdc[0] - res[0]*dres_c_dsdc[0])/det;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
} // Anonymous namespace
|
|
|
|
|
|
/* Local Variables: */
|
|
/* c-basic-offset:4 */
|
|
/* End: */
|